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● Joe Testa, Principal Security Consultant
– RIT alumnus (M.S., 2008).

● Positron Security: based in Rochester!
– Specialize in penetration testing, source code 

auditing, secure programming.



  

Introduction

This presentation will cover a couple advanced pentesting 
techniques I developed:

● SSH MITM: SSH man-in-the-middle attack tool

● PsExec Classic: run pass-the-hash attack using 
Microsoft-signed code

● Rainbow Crackalack: generate rainbow tables with GPUs



  

SSH MITM

● A little while back, I was doing an internal pentest 
with a very limited scope.
– Workstation LAN in scope; all Macintosh machines 

with firewalls.

– Infrastructure was mostly in the cloud and not in 
scope.

● With ARP spoofing, noticed that SSH traffic was 
going by...



  

SSH MITM

● Naturally, I looked for SSH man-in-the-middle 
tools.
– Surprisingly, no modern tool existed!

● A tool called JMITM2 was written in 2004.
– http://www.david-guembel.de/index.php?id=6

– Written in Java; immediately crashes in modern JVM.

– Even if it were fixed, how useful would it be?



  

SSH-MITM

● I sank hundreds of hours into the OpenSSH 
source code to make an MITM attack tool.
– This would ensure excellent compatibility with 

clients.

● Intercepted clients get warning that host key 
changed.
– 99.9999% of the time, this is caused by an OS re-

install, server re-configuration, etc.

– So most users ignore this warning.  Bad move.



  



  

SSH-MITM

● If a user authenticates with a password, it gets 
logged.

● Their session gets logged too!
– All standard input, output, and error is captured.

– If they use sudo/su, that password gets logged!

● All SFTP functions get intercepted as well.
– This took a lot of time to get working...



  

SSH-MITM

● Upon success, password is logged in 
/var/log/auth.log:

Oct  8 17:29:59 kali­2018­2 sshd_mitm[28572]: 
INTERCEPTED PASSWORD: hostname: [10.0.2.5]; username: 
[jsmith]; password: [Fall2018!] [preauth]

● Full session is logged in /home/ssh-
mitm/shell_session_*.txt



  

Time: 2018­10­08 21:27:44 GMT
Server: 10.0.2.5:22
Client: 10.0.2.8:49279
Username: jsmith
Password: Fall2018!
­­­­­­­­­­­­­­­­­­­­­­­­­
Welcome to Ubuntu 16.04.5 LTS (GNU/Linux 4.4.0­137­generic x86_64)
[...]
Last login: Mon Oct  8 17:25:25 2018 from 10.0.2.8
$ llss  ­­aall
total 48
[...]
­rw­rw­r­­ 1 jsmith jsmith   35 Oct  8 17:13 file1.txt
­rw­rw­r­­ 1 jsmith jsmith   35 Oct  8 17:13 file2.txt
­rw­rw­r­­ 1 jsmith jsmith   35 Oct  8 17:13 file3.txt
­rw­­­­­­­ 1 jsmith jsmith   33 Oct  8 17:18 .lesshst
­rw­r­­r­­ 1 jsmith jsmith  655 May 16  2017 .profile
drwx­­­­­­ 2 jsmith jsmith 4096 Sep  8  2017 .ssh
$ sssshh  jjssmmiitthh@@1100..00..22..77
jsmith@10.0.2.7's password: passw0rd!

In /home/ssh-mitm/shell_session_0.txt:



  



  

SSH-MITM

● But… how do you find SSH sessions?
– I’m glad you asked!

● In theory, you could ARP-spoof an entire LAN all at once.
– In practice, this will cause a denial of service.

– Your flimsy network interface can’t handle all the traffic.

● Included is a Python script called 
JoesAwesomeSSHMITMVictimFinder.py.
– ARP-spoofs blocks of 5 IPs for 20 seconds at a time 

(configurable).

– Passively listens for TCP port 22 traffic.



  

SSH-MITM

● This comes down to a trade-off between safety 
and speed.
– You can spoof more devices at once to find SSH 

clients faster… but this increases the chances you 
cause a DOS.

● This is effectively a waiting game.
– You might get unlucky and never observe SSH 

traffic, even though its happening.



  

SSH-MITM

# python3 JoesAwesomeSSHMITMVictimFinder.py ­­interface 
enp0s3

Found local address 10.22.83.173 and adding to ignore 
list.

Using network CIDR 10.22.83.173/24.

Found default gateway: 10.22.83.1

IP blocks of size 5 will be spoofed for 20 seconds each.

The following IPs will be skipped: 10.22.83.173

Local clients:

  * 10.22.83.31 ­> 51.94.52.31:22

  * 10.22.83.136 ­> 112.12.243.44:22

● Example output:



  

SSH-MITM

● What about key authentication?  That’s safe, right?
– Kind of.  It depends…

● An attacker can accept all incoming key auth requests.
– This doesn’t yield any useful info to complete the connection 

to the legit server.

● What if they dropped the user into a fake environment?
– Probably won’t trick humans, but can trick automated 

processes.

– Fake environment can be tweaked iteratively to satisfy 
automated processes.



  

SSH-MITM

● Fake environment idea is not implemented.
– Yet?

● Port-forward MITM’ing is possible, but not yet 
implemented.

● https://github.com/jtesta/ssh-mitm
– … or Google “ssh mitm”



  

PsExec Classic

● PsExec: tool from Microsoft Sysinternals
– Gives you remote shell access via port 445/tcp.

– Uploads an executable via ADMIN$ file share.

– Creates a system service with it.

– Executable communicates with client via SMB named 
pipes.

● Re-implemented in Metasploit a long time ago.
– Supports pass-the-hash technique.

– Launches a Meterpreter shell.

– Problem: gets caught by anti-virus/white-listing.



  

PsExec Classic

● What is pass-the-hash?

● Critical flaw in NTLM authentication.
– ntlm_hash = MD4(“passw0rd1”)

– client_resp = NetNTLMv1(ntlm_hash, cli_chall)

– client_resp = NetNTLMv2(ntlm_hash, cli_chall, srv_chall)

● Hence, if you get the NTLM hash, you can re-
play it to other hosts and complete 
authentication!



  

PsExec Classic

● Hence, if you pull the NTLM hash from memory 
or disk of a compromised machine, you can 
replay it.

● If a local administrator account has the same 
password on all workstations in a LAN, then 
you can compromise them all.

https://github.com/jtesta/ssh-mitm


  

PsExec Classic

● PsExec example:



  



  

PsExec Classic

● Microsoft Sysinternals PsExec:
– Pros:

● Uploads PSEXESVC.EXE to target, which has MS signature.
● Evades AV and possibly whitelisting systems.

– Cons:
● Doesn’t support pass-the-hash.

● Metasploit psexec:
– Pros:

● Supports pass-the-hash.
● Integrates with Meterpreter.

– Cons:
● Often gets caught by AV/whitelisting systems.



  

PsExec Classic

● I reverse engineered hired 10,000 monkeys with 10,000 
typewriters to re-write the source code to Microsoft 
Sysinternals version.

● Wrote my own tool to:
– Extract the PSEXESVC.EXE server executable (which has the 

MS signature) from PsExec.exe.

– Upload it to the target.

– Create a system service and run it.

– Communicate with its stdin/stdout/stderr.



  



  



  

PsExec Classic

● Bonus facts!

● Starting in v2.0 (~2014), they added bolted on an 
encryption layer.
– Its uses the worst possible key exchange you can imagine: 

server gives client 1,024-bit RSA public key, client encrypts 
random AES key and returns it.

– No verification that RSA key belongs to server(!).

– Uses CBC mode, and also resets state after each message(!).

● Figuring this out took a lot of time with the IDA Pro 
debugger… The monkeys took a long time to figure this 
out.



  

PsExec Classic

● Available at: 
https://github.com/jtesta/metasploit-framework 

● I’ve been wanting to split this off into its own 
stand-alone tool.
– Not sure when this will happen...



  

Rainbow Crackalack

● Make Rainbow Tables Great Again

● Rainbow tables fell out of favor in recent years.
– You need to obtain 25GB up to… terabytes...

– You need to then store them somewhere.

– Advances in GPU cracking with JTR/Hashcat made many 
tables obsolete.

– No GPU-accelerated tool existed to generate new tables.

● Rainbow tables still compliment rules-based cracking.
– For NTLM, MD5, SHA-1, and other unsalted formats.



  

Rainbow Crackalack

● Wait, what are rainbow tables?
– They are massive files that effectively store pre-computed 

password hash/plaintext pairs.

– Password salts defeat them.

● They take LOTS of time to make.
– But once somebody does, you can just obtain & store them 

for future use.

● Once they’re made, looking up password hashes takes 
minutes/hours.
– Versus days of cracking (i.e.: running up your electric bill).



  

Rainbow Crackalack

● These days, if you want good mostly out-dated 
rainbow tables, you need to pay money.
– Ophcrack’s tables are $950.

– Project Rainbowcrack’s tables are $2,400.

● But you can generate them yourself, right?
– Technically, yes… if you want to spend literally a 

decade doing it.

– CPU generation is extremely slow.

– Here’s where Rainbow Crackalack comes into play!

https://github.com/jtesta/metasploit-framework


  

Rainbow Crackalack

● The free & paid tables are mostly out-dated.

● So I wrote my own OpenCL implementation to 
run on GPUs.

● Rainbow table vendors hate this one simple 
trick!*
– Click here for more info!

* By “simple”, I mean sink 400+ hours of labor and $3K in GPUs



  

Rainbow Crackalack

● In present day, what tables are useful to generate?

● With 2 x AMD Vega 64 GPUs (~$1,100), bruteforcing:
– 7-character NTLM can be done in 24 mins.

– 8-character NTLM can be done in 40 hours.

– 9-character NTLM can be done in ~158 days.

● Ok, so let’s target 8 & 9 character passwords at a 
50% success rate.
– If you capture, say, 10 hashes to sensitive accounts, 50% 

success rate is pretty good!



  

Rainbow Crackalack

● I generated 56 GB of uncompressed tables for 8-
character NTLM passwords.

● Looked up 252 hashes derived from randomly 
generated passwords.

● Achieved ~25% success rate.  Extrapolating this for 
50%:
– ~114 GB needed of uncompressed tables.

– ~68 GB after compression.

– ~27 minutes for lookup (with 6 x GTX 1070)



  

Rainbow Crackalack

● Extrapolating these results for 50% success on 9-character 
passwords:
– First convert from chain length of 422,000 to 1,000,000: ~114 GB to ~48 

GB (uncompressed).

– 48 GB x 95 = 4,563 GB uncompressed tables.

– 2,737 GB after compression.

– ~43 hours to look up results?

– Compare to ~79 days for GPU brute forcing!

● Note that even just 10% coverage can be highly useful in some 
cases!
– This would only take ~547 GB of compressed tables & ~8.5 hours of 

lookup time.

– Compare to ~16 days for GPU bruteforcing!



  

Rainbow Crackalack

● Current state:
– Code written in C and OpenCL to generate tables in 

NTLM formats (99% complete).

– Some code for lookup acceleration (about 40% 
complete).

– Code is extensible and will include support for MD5 
and SHA-1.

– It will be open source.

– It run on Linux and Windows.



  

Rainbow Crackalack

● Once code is complete, a crowd-sourced effort will be 
announced!

● Generating tables will earn you cryptocurrency!
– For every table you submit, you get… $2.50?

– Total project cost for 50% coverage of 9-character NTLM: 
~$11,500.

● Supporters will be able to pay BTC/ETH into a pool to 
help generate more.
– Individuals can get mailed a hard drive with tables.

– Corporate sponsors can get logos on website.



  

Questions?

Joe Testa

Positron Security

Twitter: @therealjoetesta
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