

Matthew Wright, PhD

Director of the Center for Cybersecurity Professor of Computing Security

RIT Rochester Institute of Technology

How Attackers Can Read Your Encrypted Traffic ...

and Can We Stop It?

http://www.nickandmore.com/wordpress/wp-content/uploads/2013/08/cover.jpg

Website Fingerprinting Ah! A match Step 2 for P1! https://turtlehealth.com/shell P1 P2 90%+ Accuracy Shelly RIT

Meet Jerome

Jerome^{*} Goes Online

* Not related to actual interests of any Jeromes Bettises

Tor's WF Defenses

R₃**IT**

1. Train the classifier

2. Perform the attack

RIT₁₅

* For ~100 sites, not pages

RIT₁₆

Walkie-Talkie (W-T) [WG17]

- 31% bandwidth overhead; 34% added delay
- Reduce accuracy < 30%

KI'I'

[WG17] Wang and Goldberg. Walkie-talkie: An efficient defense against passive website fingerprinting attacks. USENIX 2017

WTF-PAD [JIP16]

- 54% bandwidth overhead; No added delay*
- Main candidate to be deployed in Tor [PERIS]

[JIP16] Juarez et al. Toward an efficient website fingerprinting defense., ESORIC2016. [PER15] Mike Perry. Padding negotiation. Tor protocol specification., 2015. RIT,

Deep Fingerprinting

Undermining Website Fingerprinting Defenses

with Deep Learning

Payap Sirinam Mohsen Imani Marc Juarez Matthew Wright Rochester Institute of Technology University of Texas at Arlington imec-COSIC KU Leuven, Belgium Rochester Institute of Technology

Payap

Mohsen

Marc

RIT

Deep Learning

https://codeburst.io/deep-learning-what-why-dd77d432f182

ILSVRC: 1.2M images, 1.2K categories

http://arcticicekennels.tripod.com/puppies.html

Research Goals (1)

• Prior work: early CNN

[RPJ18] Rimmer et al. Automated website fingerprinting through deep learning., NDSS2018

Improvements of CNN in the literature

Canziani et al. An Analysis of Deep Neural Network Models for Practical Applications., arXiv:1605.07678

Research Goals (2)

Evaluation against WF defenses

Deep Fingerprinting

Zeiler and Fergus. "Visualizing and understanding convolutional networks". ECCV, 2014.

RIT₂₈

Evaluation: No Defense

Walkie-Talkie: Discussion

Top-N prediction

Top-2 prediction: 98.44 Accuracy

Implementation Challenges

Conclusion

This material is based upon work supported by the National Science Foundation under Grant No. CNS-1423163, CNS-1722473, and CNS-1816851. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Questions?

https://github.com/deep-fingerprinting/df

Deep Fingerprinting Undermining Website Fingerprinting Defenses with Deep Learning

RIT Rochester Institute of Technology

https://github.com/deep-fingerprinting/df

Deep Fingerprinting Undermining Website Fingerprinting Defenses with Deep Learning

RIT₃₈

Backup Slides

RIT₃₉

Neural Networks (in 1 slide)

https://stats.stackexchange.com/questions/188277/activation-function-for-first-layer-nodes-in-an-ann https://www.digitaltrends.com/cool-tech/what-is-an-artificial-neural-network/

CNNs (in I slide)

vertical strides = 1

RIT₄₁

https://stats.stackexchange.com/questions/188277/activation-function-for-first-layer-nodes-in-an-ann https://www.digitaltrends.com/cool-tech/what-is-an-artificial-neural-network/

Batch Norm

Dropout

Train

https://stats.stackexchange.com/questions/201569/difference-between-dropout-and-dropconnect

RIT47

Closed vs. Open World

Closed vs. Open World

Monitored

facebook.com
humanrights.com

Closed-World Scenario

- Users only visit monitored sites
- Accuracy of the attack
- Unrealistic

RIT₄₉

Closed vs. Open World

Open-World Scenario

- Users can visit any site
- Attacker goal: ID monitored sites
- Precision & Recall

RIT50

Open World

- 99% precision
- 94% recall

WTF-PAD: Open World

- 96% precision
- 68% recall

Website Fingerprinting Attacks & Defenses

WF Defenses

Basic mechanisms

Transition to Practice

•Working with Tor to deploy this

RIT

Website Fingerprinting Attacks & Defenses

Lightweight WF Defenses

- Moderate bandwidth e.g. 54% + Low delay
- Reduce accuracy < 20%
- Main candidate to be deployed in Tor. [PER15] [JIP16] Juarez et al. Toward an efficient website fingerprinting defense., ESORIC2016. [PER15] Mike Perry. Padding negotiation. Tor protocol specification., 2015.

RIT⁵⁵

Adaptive Padding

WTF-PAD

- AP for Tor
- 90% accuracy →
 17%
- 54-64% bandwidth overhead
- Minimal added delay

RIT

RIT

RIT₅₈

Experimental Evaluation (Open World)

Non-Defended

Experimental Evaluation (Open World)

- WTF-PAD
 - DF perform the best
 - DF significantly outperforms other state-of-the-art
- The DF can undermine WTF-PAD

RIT₆₀

DF Model (Our) AWF Model (Rimmer et al.)

RIT₆₁

Walkie-Talkie: Discussion

- Deployablity
 - Requires database
 - Distribute to the clients and Tor's nodes
 - Only apply to static website
 - Half-duplex communication
 - 31 % additional latency
 - Direct cost to end-user performance
 - Tor is now slower than regular browsing

RIT₆₃

R₆₄IT

Deep Fingerprinting Data Collection

• Non-Defended Dataset

Tor- browser Monitored Websites -crawler	95 Website, Each contains 1000 instances	Unmonitored Websites Unmonitored site 1 Traffic Instance 1 Unmonitored site 40716 Traffic Instance 1	40716 Website, Each contains 1 instance
---	--	--	---

- WTF-PAD Dataset
 - Simulated from non-defended dataset (same size)

R₆₅**IT**

Deep Fingerprinting Data Collection (Cont.)

Walkie-Talkie

• Modified	Or-browser-c	rawler	to suppor Unmonitored Websites	t half-d uplex
browser -crawler	Monitored site 1 Traffic Instance 1 ··· 899 900 	100 Website, Each contains 900 instances	Unmonitored site 1 Traffic Instance 1 : Unmonitored site 40000 Traffic Instance 1	40000 Website, Each contains 1 instance

Deep Fingerprinting •DF Model

Failure Causes of WTF-PAD

- Ability to detect the hidden features
 - WTF-PAD handle WF attacks using handcrafted features
 - Defense hides the deterministic features
- Robustness against small change
 - WTF-PAD aim to fill the gap with the faked burst

RIT

• Insufficient distortion and still leave fingerprint

Background & Related Work •WF Attacks using Hand-crafted Features (Cont.)

- **K-NN** [Wang et al.]
 - Packets ordering, #incoming & outgoing, #bursts etc.
 - k-Nearest Neighbors
 - 9 Way Acculication (Gosed and desite fingerprinting. , USENIX 2014
 - 86% TPR and 0.6% FPR (open world)

RelT

- CUMUL [Panchenko et al.]
 - Cumulative sum of packet lengths.
 - SVM
 - 9 hanon Ances 10 10 acy of get an sing de in the marshale), NDSS 2016
 - 96% TPR and 1.9% FPR (open world)

R₀IT

Background & Related •WF Affacks using Hand-crafted Features (Cont.)

- **K-FP** [Hayes and Danezis]
 - Traditional features such as #packets
 - Random Forest to extract the features
 - Analyze the importance of the features
 - 9 12% Ad Danazis & Eingerrechting: A rebust scaladed besite fingerprinting technique. , USENIX 2016.
 - 88% TPR and 0.5% FPR (open world)

ML Techniques Used in the DF

Deeper Networks

- Krizhevsky et al. Imagenet classification with deep convolutional neural networks., NIPS 2012.
- Szegedy et al. Going deeper with convolutions. CVPR 2015.
- Karen and Andrew. Very deep convolutional networks for large-scale image recognition. ArXiv2015.

Appropriate Activation Functions

- Clevert et al. Fast and accurate deep networks learning by exponential linear units (elus). ICCV2015.
- Mishkin et al. Systematic evaluation of CNN advances on the imagenet. CoRR, abs/1606.02228, 2016.

Prevent Overfitting

- Srivastava et al. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research 2014
- loffe and Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift., International Conference on Machine Learning, 2015

RIT₇₂
Experimental Evaluation Convergence of the DF model

- 97 % Accuracy (10 epoch)
- Level off after 30 epochs

Overfitting measurements

- Small difference between training and testing rates (< 2%)
- Overfitting is unlik

Closed World: Impact of the number of training epochs on the DF model's accuracy and error rate

R₃**IT**

RIT₇₅

Deeper Model

- •How to go deeper
 - Note that, we don't need the extremely deep network like Inception
 - We tested with Inception, Xception, GoogleNet, there is no noticeable improvement for the accuracy of the attack
 - The model just needs to be deep enough to provide the effective performance
 - Deeper network does not always provide the better result

Deeper Model

- •How to go deeper
 - Multiple filters before pooling
 - Pooling always reduce the size of the input
 - The early model uses one filter followed by pooling
 - After_E our set in the set of the set of

Deeper Model

- Batch Normalization
 - Normalize the inputs to layers with in the network
 - Mean activation close to 0, activation S.D. close to 1
 - Batch normalization helps reduce the sensitivity to the initial starting weights
 - Prevent vanishing gradient problem when the networl

• Even v

he model sometimes stops learning

R₈IT

Performance Metric •Accuracy

Accuracy = $\frac{P_{correct}}{N}$

 $P_{correct}$ is the total number of correct predictions. A correct prediction is defined as the output of the classier matching the label of the website to which the test trace belongs. *N* is the total number of instances in the test set.

R₇₉**IT**

Performance Metric Precision & Recall

$$Precision = \frac{TP}{TP + FP} \qquad Recall = \frac{TP}{TP + FN}$$

TP is the total number of test samples of monitored websites that are correctly classified as monitored websites.

TN is the total number of test samples of unmonitored websites that are correctly classified as unmonitored websites.

FP is the total number of test samples of unmonitored websites that are misclassified as monitored websites.

FN is the total number of monitored websites that are misclassified as unmonitored websites.

R_®IT

Website Fingerprinting Attacks & Defenses

WF Defenses

- Basic mechanisms
 - Add and/or delay packets
 - Reduce the distinctive features
- Early WF Defenses
 - BuFLO [DCR12] and Tamaraw [CNJ14]
 - Make traffic look constant rate
 - 200 400% extra latency → 2-4X as long to get the website
 - Over 130% extra bandwidth

[DCR12] Dyer et al. Peek-a-Boo, I still see you: Why efficient traffic analysis countermeasures fail., IEEE S&P 2012 [CNJ14] Cai et al. A systematic approach to developing and evaluating website fingerprinting defenses., CCS 2014

RIT⁸¹

Half-Duplex Communication

Client Picture1 Server

Full-Duplex

Half-Duplex

R⁸²IT

R₈₃IT

Deep Fingerprinting

DF Model: Improved Design of CNN

• ELU vs ReLU

RIT₈₄

Hyperparameters	Search Range	Final
Input Dimension	[500 7000]	5000
Optimizer	[Adam, Adamax, RMSProp, SGD]	Adamax
Learning Rate	[0.001 0.01]	0.002
Training Epochs	[10 50]	30
Mini-batch Size	[16 256]	128
[Filter, Pool, Stride] Sizes	[2 16]	[8, 8, 4]
Activation Functions	[Tanh, ReLU, ELU]	ELU, ReLU
Number of Filters		
Block 1 [Conv1, Conv2]	[8 64]	[32, 32]
Block 2 [Conv3, Conv4]	[32 128]	[64, 64]
Block 3 [Conv5, Conv6]	[64 256]	[128, 128]
Block 4 [Conv7, Conv8]	[128 512]	[256, 256]
Pooling Layers	[Average, Max]	Max
Number of FC Layers	[1 4]	2
Hidden units (each FCs)	[256 2048]	[512, 512]
Dropout [Pooling, FC1, FC2]	[0.1 0.8]	[0.1, 0.7, 0.5]

Table 1: Hyperparameters selection for DF model from Extensive Candidates Search method

RIT⁸⁵

Batch Normalization Activation Layer Convolutional 1D Batch Normalization Activation Layer Max Pooling	ReLU 256 Maps, Kernel: 1 x ReLU	
Activation Layer Convolutional 1D Batch Normalization Activation Layer Max Pooling	ReLU 256 Maps, Kernel: 1 x ReLU	
Convolutional 1D Batch Normalization Activation Layer Max Pooling	256 Maps, Kernel: 1 x ReLU	
Batch Normalization Activation Layer Max Pooling Deepent	ReLU	
Activation Layer Max Pooling	ReLU	
Max Pooling		
Dranaut	Pool: 1 x 8	
Diopolit	Rate = 0.1	
y-Connected (FC)		
ers		
FC Layer 1	512 hidden units	
Batch Normalization		
Activation Layer	ReLU	
Dropout	Rate = 0.7	
FC Laver 2	512 hidden units	
Batch Normalization		
Activation Laver	ReLU	
Dropout	Rate = 0.5	

RIT⁸⁶

User Interfaces

Impact of Two Factor Authentication

Josephine Wolff Public Policy

Why Use 2FA?

- Mitigate phishing
- Password breaches

Research Questions:

- Impact of 2FA on account compromises
- Which technologies do users adopt?
 - Key fob, smartphone app, SMS (text) code, phone call
- Barriers to usability and adoption

RIT

Tools for Professionals

Mining to understand security bugs

Andy Meneely Software Engineering

Modeling

RIT

Results

- No added delays
- 54% bandwidth overhead
- Much worse for the attacker

RIT

RIT₉₆

The attacker can easily learn user's Internet behavior

RIT₉₇

Tor: Privacy Enhancing Technology

No individual node has the complete path information

RIT₉₉

RIT₁₀₀

RITIO

RIT

Closed vs. Open World

Monitored-vs Unmonitored Websites

Closed vs. Open World

Closed-World Scenario

- Users only visit monitored sites
- Accuracy of the attack
- Unrealistic

Closed vs. Open World

Set of websit	es all around the world
Monitored facebook.com humanright.com	
	Unmonitored (Over 1 billions websites) cartoon.com alibaba .com

Open-World Scenario

- Users can visit any website (> Billions)
- Recognizing monitored vs. unmonitored
- Matt's Rule of Thumb
 - 90+% CW Accuracy →
 High Danger

RIT106

RIT

RIT¹⁰⁸