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How Attackers Can Read Your
Encrypted Traffic ...

and Can We Stop It?



Encrypted Traffic

Reading up
on my
athlete’s shell
symptoms.

https://turtliehealth.com/shell

Encrypted
Connection
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VVebsite Fingerprinting

" '." https /Iturtlehealth.com/shell

https://turtlehealth.com/tail
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https://turtlehealth.com/shell
https://turtlehealth.com/tail

Website Fingerprinting

: 90%+ Accuracy:
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Tor’s WF Defenses
ar

A
Webserver

Tor

,«V@& HTTP get:

I Exit B, C,A

Without Tor lﬁA"
L". ..'.'...J,» cfian e HT';I\',PB’gCet;

With Tor (512 byte cells)
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WEF in Tor

1. Train the classifier

LEARNING

CLASSIFIER

RIT
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WEF in Tor

CLASSIFIER

2. Perform the attack




Heh!
Nice try

:90%+ Accuracy : :

IIIIIIIIIIIIIIIIIIIII.
“ For ~100 sites, not pages
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Walkie-Talkie (W-T) ...

* 31% bandwidth overhead; 347% added delay
* Reduce accuracy < 30%

Site A 11 |
D Outgoing Traffic Site B #
I Incoming Traffic
Site A
Molded with M
Site B

[WG17] Wang and Goldberg. Walkie-talkie: An efficient defense against passive website fingerprinting attacks. USENIX 2017



WTF-PAD ..,

* 54% bandwidth overhead; No added delay*™
* Main candidate to be deployed in Tor [peris)

Burst1 Burst 2

Real Packets Real Packets

Large Gap

!

Burst 1 Burst 2

Detect the Large Gap
& Pad Dummy Packets

Real Packets Dummy Packets Real Packets

[JIP16] Juarez et al. Toward an efficient website fingerprinting defense., ESORIC2016.
[PER15] Mike Perry. Padding negotiation. Tor protocol specification., 2015.
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Deep Fingerprinting
Undermining Website Fingerprinting Defenses
with Deep Learning

Payap Sirinam Rochester Institute of Technology

Mohsen Imani University of Texas at Arlington
Marc Juarez imec-COSIC KU Leuven, Belgium
Matthew Wright  Rochester Institute of Technology
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Deep
Learning

https://codeburst.io/deep-learning-what-why-dd77d4 32182

22



- -'

T e— i ——

r

ILSVRC: 1.2M images, 1.2K cateqgories
° ° RIT





http://arcticicekennels.tripod.com/puppies.html

15,0

10,0

5,0

0,0

ImageNet Classification Error (Top 5)

2011 (XRCE) 2012 (AlexNet) 2013 (zF) 2014 (VGG)

2014
(Googmm)
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Research Goals (1)
* Prior work: early CNN

[RPJ18] Rimmer et al. Automated website fingerprinting through deep learning., NDSS2018

* Improvements of CNN in the literature

v

~55% Accuracy ~71% Accuraéy ~80% Accfac
AlexNet (2012) VGG19 (2014) Inception V4 (2016)
RIT,

Canziani et al. An Analysis of Deep Neural Network Models for Practical Applications., arXiv:1605.07678



Research Goals (2)

* Evaluation against WF defenses

CNN

Model =) ~80 Accuracy

CNN
Model ‘ Effective?

RIT
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Deep Fingerprinting

Deeper layers
Ty #Flltersgrowmg —
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Low-level

Network
o Ml .

Zeiler and Fergus. “Visualizing and understanding convolutional networks”. ECCV, 2074. I 2 I I 28




Deep Fingerprinting

Input Data

Conv Layer

BN

RelLU or ELU

Conv Layer

BN

RelLU or ELU

Max Pooling

Dro'aout

FC Layer

BN

RelLU

DroE)ut

Prediction

DF Model

(Our)

Input Data
| Dropout |
[ Convlayer | Bacic Block
| RelU | Repeat 3 Times
Basic Block | Max Pooling |
Repeat 4 Times
Fully Connected
(FC) Layer
Repeat 2 Times
| Prediction |

AWF Model

"3X deeper (Rimmer et al.)
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Evaluation: No Defense

99% 98.30%
98%

97.30%

97%

95.50%

96%
94.90% 95.00%

: B I i

92%
91%
90%
89%
Accuracy

mSDAE ®mDF ®AWF ®kNN ®CUMUL mk-FP
RIT
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100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Burst 1

WTF-PAD

* 64% Bandwidth

Burst 1
90.70%
Real Packets
69.00%
60.80% 60.30%
36.90%
16.00%
[
Accuracy
m SDAE m DF mAWF w k-NN m CUMUL m k-FP

Burst 2

Real Packets

Large Gap
Detect the Large Gap
& Pad Dummy Packets
Burst 2
Dummy Packets Real Packets

RI'L.



60%

50%

40%

30%

20%

10%

0%

Walkie-Talkie

* 31% Bandwidth, 34% Latency = Metedwien —

23.10%

m SDAE

49.70%

m DF

Site A I I I I
Site B — u I_
Site A I I I

Site B

Theoretical

45.80%

38.40%
20.20%

Accuracy

u AWF

@ k-NN

m CUMUL

Maximum Accuracy

7.00%

 k-FP
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Walkie-Talkie: Discussion

* Top-N prediction sen OO0

Top-2 prediction:
98.44 Accuracy Site A §Ef 11

Molded with
Site B

* Implementation Challenges

stes O NN B



Conclusion

DF
Model m) \ery Effective
DE 90% accuracy
Model | ™ ©r

98% Top-2

RIT
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This material is based upon work supported by the National Science Foundation under Grant No. CNS-1423163, CNS-1722473,
and CNS-1816851. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science Foundation.



Questions!

https://qgithub.com/deep-fingerprinting/df
Deep Fingerprinting

Undermining Website Fingerprinting Defenses with Deep Learning

R 1] | Rochester Institute of Technology



https://github.com/deep-fingerprinting/df

(i FOR 7/
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THE INFORMATION SECURITY LAB CO S | C

Deep Fingerprinting

Undermining Website Fingerprinting Defenses with Deep Learning
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https://github.com/deep-fingerprinting/df

Backup Slides
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Neural Networks (in | slide)

inputs bias

wlgms

82 Wy

PR A

RelLU Activation Function

max(O,X)

100 -75 -50 -25 00 25 50 75 100
X Axis

)

/ Right?

\ Wrong7

layer
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https://www.digitaltrends.com/cool-tech/what-is-an-artificial-neural-network/
https://www.digitaltrends.com/cool-tech/what-is-an-artificial-neural-network/

CNNs (in | slide)

0 0 0 Kernel Matrix

10n | a7 ac |0|-1|0| ]:-ml | | | l

Sliding window

wil wE-

complex shapes shapes that can be
used to define a flower

B B T B

Filters
light and dark

Every feature map output is the
result of applying a filter to the image

The new feature map is the next input

Activations of the network at a particular ijer/

vertical strides =1

https://stats.stackexchange.com/questions/188277/activation-function-for-first-layer-nodes-in-an-ann RI I 4]
https://www.diqgitaltrends.com/cool-tech/what-is-an-artificial-neural-network/



https://www.digitaltrends.com/cool-tech/what-is-an-artificial-neural-network/
https://www.digitaltrends.com/cool-tech/what-is-an-artificial-neural-network/

Data Representation
Outgoing Burst

I Outgoing Traffic
I Incoming Traffic
I III Incoming Burst

11111111111
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Deep Fingerprinting

Input Data Input Data

Conv Layer
BN
RelU or ELU

| |

| |

| |

| Conv Layer l Basic Block

| BN |
| |

| |

| |

Dropout

| |
[ Convlayer | Bacic Block

| Rel U | Repeat 3 Times

[ MaxPooling |

RelLU or ELU
Max Pooling

Dro'aout
FC Layer

| |

| BN I (FC) Layer
| RelLU | Repeat 2 Times
| |

DroE)ut

| Prediction | | Prediction |

Fully Connected

DF Model AWF Model

(Our) (Rimmer et al.) “ R I T



Deep Fingerprinting

Input Data Input Data
| Conv Layer N | Dropout |
e — |
[ RelUorELU | | ReLU J|g Repeats Times
| Conv Layer | E—— [ MaxPooling |
| BN l Repeat 4 Times
| RelU or ELU |
| MaxPooling |
| Dro&out I
| FC Layer N " ’

Fully Connecte

| BN I (FC) Layer
| RelLU | Repeat 2 Times
| Drog)ut |
| Prediction | | Prediction |

DF Model AWF Model

(Our) (Rimmer et al.) R I T
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Deep Fingerprinting
&

s 2
Conv Layer Conv Layer
BN RelLU
RelLU or ELU Max Pooling
Conv Layer
BN
RelLU or ELU
Max Pooling
Drog)ut
DF Model AWF Model
(Our) (Rimmer et al.)

45

RIT



Batch Norm

Cost

Gradient Descent

f (x) = nonlinear function of x

' Learming step

Minimum

1 = ]

Random w W
initial value
. Loss .
Gradient Descent ;
Big learning rate Small learning rate ov
BN: 30 cm max
https://saugatbhattarai.com.np/what-is-gradient-descent-in-machine-learning/
https://towardsdatascience.com/gradient-descent-in-a-nutshell-eaf8c18212f0 46

https://medium.com/@julian.harris/stochastic-gradient-descent-in-plain-english-9e6¢10cdba97



https://saugatbhattarai.com.np/what-is-gradient-descent-in-machine-learning/
https://towardsdatascience.com/gradient-descent-in-a-nutshell-eaf8c18212f0
https://medium.com/@julian.harris/stochastic-gradient-descent-in-plain-english-9e6c10cdba97

Dropout

https://stats.stackexchange.com/questions/201569/difference-between-dropout-and-dropconnect R I rI:7



https://stats.stackexchange.com/questions/201569/difference-between-dropout-and-dropconnect

Closed vs. Open World
[ ~ A

Monitored
facebook.com
humanrights. com Unmonitored
..... cartoon.com
\_ W, alibaba.com

\_ v




Closed vs. Open World

-

\_

Monitored
facebook.com

humanrights.com

~

J

Closed-Worild Scenario

* Users only visit monitored
sites

* Accuracy of the attack

 Unrealistic



Closed vs. Open World

é )
Monitored
facebook.com Unmonitored
humanrights.com cartoon.com
..... alibaba.com
\ J

~

Open-World Scenario
* Users can visit any site

* Attacker goal: ID monitored
sites

 Precision & Recall



Open
World

* 99% precision
* 94% recall

Precision

0.8

0.6

0.2

0

I

OO W W = = Y e

== kNN
= @= kFP
=-@®= AWF

= = = Baseline

= = CUMUL
= A= DF
= SDAE

I

I

0 2

Recall

I
04 0.6 0.8 1

51



WTF-PAD:
Open
World

* 967 precision
* 68% recall

Precision

I
1 | o
v A A
e 'y
0.8 F—2ess .
Ya % L
~~\v~~‘~
0 - 5'Q~~.~~ -
0.6 = x\\::: i
0.4 T P—— o] —
"""" =l= kNN =wy= CUMUL
09 L =@= kFP == DF I
) - @®= AWF SDAE
= = = Baseline
0 | | 1 |
0 0.2 04 0.6 0.8

Recall
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Website Fingerprinting Attacks & Defenses

WF Defenses
 Basic mechanisms

Add dummy packets s :

Trained Classifier

Google ﬂl” I“l H] ]I U_ % Monitored Websites
eqd !
‘ Padding :

- coogle ||| I [III1]

— 1
'

oo ” I ” EEI “l i EIH I IEI | More difficult to be matched Yahoo ki
CNN

Delay packets R C S g e et <l 3

Trained Classifier

Eas; |

Google ﬂ.' “ |”I HH I I<|— % E Monitored Websites
ed !
‘ Delaying :

Coose U1 LI I
Google ll Hl ” I | | I l l_l_l More difficult to be matched Yahoo o i




Transition to Practice

* Working with Tor to deploy this

£+

RIT



Website Fingerprinting Attacks & Defenses

Lightweight WF Defenses
« WTF-PAD [/IP16]

Burst 1 Burst 2
Real Packets Real Packets
Large Gap
Detect the Large Gap
& Pad Dummy Packets
Burst 1 Burst 2
Real Packets Dummy Packets Real Packets

* Moderate bandwidth e.g. 54% + Low delay
* Reduce accuracy < 20%

« Main candidate to be deployed in Tor. [rer15]
[JIP16] Juarez et al. Toward an efficient website fingerprinting defense., ESORIC2016.
[PER15] Mike Perry. Padding negotiation. Tor protocol specification., 2015.




Adaptive Padding

= VIF-PAD
L.'. .-..-.-'.-.J AP for Tor

Tor (unpadded) * 90% accuracy =2
17%

e 54-64% bandwidth
overhead

Tor w/ Adaptive Padding

* Minimal added delay

RIT



Tor Caells

Heh! Nice
try ©

P1 :
. . = '> 8 'm ,
‘ .l ..l. : Em "‘- EEEEEEEHR l*l.
Without Tor : 9O%+ ACCU raCy :
*

P1 For ~100 sites, not pages
l.'..l'llll.llll >

With Tor (512 byte cells)

B
Ui

RIT



Webserver

Attacker Middle

ottleneck
« Yarassment

q‘ _ « Biocking
 Law Enforcement
& Extra Bandwidth

Client

RI'T:



Deep Fingerprinting

Experimental Evaluation (Open World)

 Non-Defended

* DF outperforms

other state-of-the-art ¢ |

0.6

Precision

= ll= kNN
= @= KkFP
= @®= AWF

= = = Baseline

-v-
-‘-

CUMUL |
DF
SDAE

| |
0.4 0.6
Recall

0.8 1

RI'T



Deep Fingerprinting

Experimental Evaluation (Open World)

« WTF-PAD |
1} A :
+ DF perform the best 8"'\'}:& *a,
Yo N ‘A
« DF significantly & 06l ‘ ':“:z;;o\ ki
outperforms < 1 e
other state-of-the-art =  ,[*._ |
. e .
== kNN == CUMUL
* The DF can undermin¢ 02| S0 AW - u SDAE
WTF_PAD 0 | = = = Baseline |

| \
0 02 04 06 0.8 1

Recall
RIT.



Deep Fingerprinting

W
FC Layer

BN
RelLU

Droi:)ut

Prediction Prediction

DF Model AWF Model

(Our) (Rimmer et al.) R I TL



Deep Fingerprinting

| Conv Layer | 32 | Conv Layer 32
| Conv Layer | 32

| Conv Layer | 64 | Conv Layer 32
| Conv Layer | 64

| Convlayer | 178 | Convlayer | 32
| Conv Layer | 128

| Conv Layer | 256

| Conv Layer | 256

DF Model AWF Model

(Our) (Rimmer et al.) R I Tz



Deep Fingerprinting

Walkie-Talkie: Discussion
« Deployablity

» Requires database
* Distribute to the clients and Tor’s nodes

« Only apply to static website

» Half-duplex communication
« 31 % additional latency
» Direct cost to end-user performance
« Toris now slower than regular browsing




Deep Fingerprinting

Data Collectic

@)
Attacker \

Tor-browser-crawler

Timestam

p
0.0000
0.2110
0.2371
0.3591

...................

Direction |
+1

-----------

------------

+1
1
1

Tor

Website m, Network traffic instance n
[+1,+1,-1,-1,..,0,0]
\ J
||

Length: 5,000
+1: outgoing, -1 : incoming, 0 : Padding

Websites

Tor-browser-crawler:

Juarez et al. A critical evaluation
of website fingerprinting attacks.,
CCS2014

RIT



Deep Fingerprinting

Data Collection

* Non-Defended Dataset

Tor-

browser
-crawler

Monitored Websites

Monitored site 1

s

Monitored site 95

e

95 Website,
Each contains
1000 instances

Unmonitored Websites

Unmonitored site 1

Unmonitored site 40716

40716 Website,

Each contains
1 instance

* WTF-PAD Dataset

 Simulated from non-defended dataset (same size)

Nl 1



Deep Fingerprinting

Data Collection (Cont.)
* Walkie-Talkie

* M¢

Monitored site 100

e SE

Unmonitored site 40000

Re e T 1 1 1 1L, 1
Dr'llflnrl |C\|~ hrn AIC e Cravv!e ol cnr\r\or na”_d
Tor- 1\/Ion|toremv bsi es b'nmonltoreMsnes
browser Monitored site 1 Unmonitored site 1
-crawler l-- 100 Website, 40000 Website,
Each contains Each contains
: 900 instances : 1 instance

plex




Deep Fingerprinting
‘DF Model

* Based on the CNN architecture

T Feature Extraction | e Classification

—— ——— —— — —— ——— —— ——— —— — ———— ——— e e e e e — — — — —— — —— —— — ————

1




Deep Fingerprinting

Failure Causes of WTF-PAD

« Ability to detect the hidden features

« WTF-PAD handle WF attacks using hand-
crafted features

* Defense hides the deterministic features

* Robustness against small change
« WTF-PAD aim to fill the gap with the faked burst

* |Insufficient distortion and still leave fingerprint

RIT
AN A L



Background & Related Work
*WF Attacks using Hand-crafted

Features (Cont.)
e k-NN [Wang et al.]

* Packets ordering, #incoming & outgoing, #bursts etc.

* k-Nearest Neighbors
i 9 llv% Amunaﬁ;ek(ﬁl,c}sad WK lcdu)ebs/te fingerprinting. , USENIX 2014
*86% TPR and 0.6% FPR (open world)

69 |



Background & Related
* WHRWttaeks using Hand-crafted

Features (Cont.)
« CUMUL [Panchenko et al]

* Cumulative sum of packet lengths.

* SVM

o 9 )% Aecu L) /éﬁel@/&@dr /W@zlélda) NDSS 2016
*96% TPR and 1.9% FPR (open world)

/0



Background & Related
‘W ks using Hand-crafted

Features (Cont.)

e <-FP [Hayes and Danezis]
* Traditional features such as #packets
* Random Forest to extract the features
* Analyze the importance of the features
° 9 )Vé%s A@Wyg(re’f@gé HbWGH/dI)ebsiz‘e fingerprinting technique. , USENIX 20176.
* 88% TPR and 0.5% FPR (open world)

1 )



ML Techniques Used in the DF

Deeper Networks

- Krizhevsky et al. Imagenet classification with deep convolutional neural networks., NIPS 20172.

- Szegedy et al. Going deeper with convolutions. CVPR 20175.

- Karen and Andrew. Very deep convolutional networks for large-scale image recognition. ArXiv2015.

Appropriate Activation Functions
- Clevert et al. Fast and accurate deep networks learning by exponential linear units (elus). ICCV2015.
- Mishkin et al. Systematic evaluation of CNN advances on the imagenet. CoRR, abs/1606.02228, 20176.

Prevent Overfitting

- Srivastava et al. Dropout: A simple way to prevent neural networks from overfitting.

Journal of Machine Learning Research 2074

- loffe and Szegedy. Batch normalization.: Accelerating deep network training by reducing internal
covariate shift., International Conference on Machine Learning, 2015



 Experimental Evaluation
* Convergence of the DF model

* 97 % Accuracy (10 epoch)
* Level off after 30 epochs

* Overfitting measurements

* Small difference betwean -

. . . o -__.-- .---.----
training and testing T i | .
rates (< 2%) (e ’

: 06 | — @- DF Training Accuracy 6 b=
¢ Overflttlng is unlik 5 == DI Tosting Xecuracy %
o ®- DF Testing Error Rate S
— 94 - +- DF Training Error Rate 4 =
< =

¢ ‘ ------ ¢

S e i o

Mt ot Y TP
90 0

10 20 30 40

Number of epochs

Closed World: Impact of the number of training
epochs on the DF model’s accuracy and error rate



Accuracy

100 B ___..------.""'- \10
08 :---v-" D il ok ks SR
06 - m- DF Training Accuracy 6 %
— w- DF Testing Accuracy =
- ®- DF Testing Error Rate 5
94 - - DF Training Error Rate 4 5
®--@...
A *- * "'"f—-o---‘ 2
..‘--.
...’--- e [Rep—
90 =l

10 20 30 40
Number of epochs

RIT-



Accuracy

100

B i
S Q=0
AIPTE E g il
o0 | @ ¥ - ': -
L e
i m
4 ’
80 ——
] ,’
© o - - DF
. - y- CUMUL
70 L4 - - k-NN
! - 4= k-FP
[ - 0- AWF
| - m- SDAE
60 '
0 200 400 600 800

Training Size

RI'T



Deeper Model
*How to go deeper
* Note that, we don’t need the extremely deep

network like Inception

* We tested with Inception, Xception, GoogleNet, there is no
noticeable improvement for the accuracy of the attack

* The model just needs to be deep enough to provide
the effective performance

* Deeper network does not always provide the better
result

76 |



Deeper Model

*How to go deeper

* Multiple filters before pooling
* Pooling always reduce the size of the input
* The early model uses one filter followed by pooling

°AfterEg;.pu i ]:5 s@eﬂwﬂl be reduced

to very smaII size, lo | a lot of information

Deeper ' Depth is 6

Filter1

— ’ 2500
Filter1

%

1

2

Filter2

’ Poolin ‘
g
2500

Filte
Filter1
Filter2
1250
Filter1
Filte



Deeper Model
* Batch Normalization
* Normalize the inputs to layers with in the network
e Mean activation close to 0, activation S.D. close to |

* Batch normalization helps reduce the sensitivity to
the initial starting weights

* Prevent vanishing gradient problem when the
networl - 2per

he model sometimes stops learning

//k
/

78 |



Performance Metric
* Accuracy

PCOTT‘@Ct

Accuracy = N

P..,rrect 1S the total number of correct predictions. A correct prediction

is defined as the output of the classier matching the label of the website to
which the test trace belongs. Nis the total number of instances in the test
set.




Performance Metric
 Precision & Recall

Precision = —— Recall = ——
recision = TP + FP ecailt = TP + FN

TP is the total number of test samples of monitored websites that are
correctly classified as monitored websites.

TN is the total number of test samples of unmonitored websites that are
correctly classified as unmonitored websites.

FP is the total number of test samples of unmonitored websites that are
misclassified as monitored websites.

FN is the total number of monitored websites that are misclassified as
unmonitored websites.



Website Fingerprinting Attacks & Defenses

WF Defenses

 Basic mechanisms
« Add and/or delay packets
 Reduce the distinctive features

« Early WF Defenses
 BUuFLO [pcrr2] and Tamaraw [cni4]

 Make traffic look constant rate

« 200-400% extra latency - 2-4X as long to get
the website

 Over 130% extra bandwidth

[DCR12] Dyer et al. Peek-a-Boo, | still see you: Why efficient traffic analysis countermeasures fail., IEEE S&P 2012
[CNJ14] Cai et al. A systematic approach to developing and evaluating website fingerprinting defenses., CCS 2074




Half-Duplex Communication

Client

—

Full-Duplex

Server

Client

Server



Decoy Site

A__ e NN
1] BLLLIN ]

f [ ] ]
NOV
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Deep Fingerprinting

DF Model: Improved Design of CNN

« ELU vs ReLU
N0 B

RI'T-



Table 1: Hyperparameters selection for DF model from Ex-
tensive Candidates Search method

Hyperparameters Search Range Final
Input Dimension [500 ... 7000] 5000
Optimizer {3::;;; o?dggg}]( ' Adamax
Learning Rate [0.001 ... 0.01] 0.002
Training Epochs [10 ... 50] 30
Mini-batch Size [16 ... 256] 128

[Filter, Pool, Stride] Sizes 2 ...16] (8, 8, 4]
Activation Functions [Tanh, ReLU, ELU] ELU, ReLU
Number of Filters

Block 1 [Conv1, Conv2] (8 ... 64] [32, 32]
Block 2 [Conv3, Conv4] [32 ... 128] [64, 64]
Block 3 [Conv5, Convé] [64 ... 256] [128, 128]
Block 4 [Conv7, Conv8] [128 ... 512] [256, 256]
Pooling Layers [Average, Max] Max
Number of FC Layers -y 2

Hidden units (each FCs) [256 ... 2048] [512, 512]
Dropout [Pooling, FC1, FC2]  [0.1 .. 0.8] [0.1,0.7, 0.5]

RI'L



Input Data |

IQGkﬂlII.IIII..IIII.‘-II.IIIIIIII..II
|_Convolutional 1D | 32 Maps, Kemel: 1 x 8
| Batch Normalization |

L_Activation Laver | ELU (alpha = 1.0)
_Convolutional 1D | 32 Maps, Kernel: 1x 8

| Batch Normalization |

L_Activation I aver | ELU (alpha = 1.0)

Rate = 0.1

assunm --------------I---------------J'

FOFKZIIIIIIIIIIIIII lllIllllIllIllI%

lllll..l.l.l.l....u —

g
3
(=
-
Co

Rate = 0.1

mpgk}IIIIIIIIIIIIII IIIIIIIIIIIIIII%
_Convolutional ID | 728 Maps, Kernel: 1x8 3
| Batch Normalization I

|_Activation I ayer | ReLU

| Convolutional 1D | 128 Maps, Kernel: 1 x 8
| Batch Normalization I

L_Activation Laver ] ReLU
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Rate = 0.1
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Impact of Two Factor

Authentication Josephine Wolff
Public Policy

Two Factor Authentication (2FA)

Why Use 2FA? Research Questions:
Q

* Impact of 2FA on account compromises

* Mitigate phishing
A\ ™ Password breaches *  Which technologies do users adopt?

* Key fob, smartphone app, SMS (text) code, phone call

* Barriers to usability and adoption

RIT
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Mining to understand

security bugs

Andy Meneely
Software Engineering

Ah! This is when
the bug was
added!

SOCIAL comNG /
T ot

0

Apr. 20, 2016
: ) 9
32%%)1 8 ﬂ
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Modeling Attackers

Jay Yang
Computer Engineering

Advanced Cyber
Attack Simulations

Better Better
Understanding Defenses RIT



Human-Centere

User Interfaces
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Results

* No added delays

* 54% bandwidth
overhead

* Much worse for
the attacker

1
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0 1
Recall
- - - Unprotected -+ WTF-PAD —— Random

RIT



Website Fingerprinting in Tor

RI'L



Website Fingerprinting in Tor

il

User / IP Address

Websites

Attacker

The attacker can easily learn user’s Internet behavior
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Website Fingerprinting in Tor

Explore. Privately.

Tor: Privacy Enhancing Technology

RI'L



Website Fingerprinting in Tor

No Protection }

Attacker

Attacker

No individual node has the complete path information

RIT



Website Fingerprinting in Tor

User
" . Attacker
&3
< $

‘ The attacker fails to link
User € - Guard Node user to the actual website
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Website Fingerprinting in Tor

 WF Attacks

* Try to link the user
to the website

2t

r
cKer
MACHINE
LEARNING . . .
T ISIde-channel information

I e.g. Packets statistics

Information Leak 1l</1ve[[§ | | I ]
- Packets Statistic «
/

- Burst of packets

* Unique for each website
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Center Mission

n
 Tied to
Research
* Real projects




Heh! Nice

\ @t try ©

DNSSEC

o
/ \

/ \

- 90%+ Accuracy”

Gy EEEEEEEEEEEEEEEED
*
For ~100 sites, not pages

RIT
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Closed vs. Open World

/ Set of websites all around the world \

Monitored
facebook.com

humanright.com

Unmonitored
(Over 1 billions websites)

cartoon.com
alibaba .com

5 y

Monitored- vs Unmonitored Websites RIT.




Closed vs. Open World

Closed-World Scenario

- . rs only visit monitored si
Monitored Users only visit monitored sites

facebook.com

humanright.com

* Accuracy of the attack

 Unrealistic

RI'L



Closed vs. Open World

/ Set of websites all around the world \

Monitored
facebook.com

Unmonitored

(Over 1 billions websites)

cartoon.com
alibaba .com

4

Open-World Scenario

* Users can visit any website
(> Billions)

* Recognizing monitored vs.
unmonitored

* Matt’s Rule of Thumb
* 90+% CW Accuracy =2
High Danger




RIT



Webserver

Attacker Middle

ottleneck
« Yarassment

q‘ _ « Biocking
 Law Enforcement
& Extra Bandwidth

Client
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