
A PROGRAM-BASED APPROACH TO
SECURING SOFTWARE DEVELOPMENT

Stan Letarte, CISM
vCISO and Senior Security Strategist, GreyCastle Security

sletarte [at] GreyCastleSecurity [dot] com

OUTLINE

Shift Left Getting
Started

Software
Security

Problem
Space

IS THERE A PROBLEM?

The software and technology industry is one of the fastest growing industries.
Supposition: Software Security has not
kept pace with the rest of information
security.

Many software developers are not
security-trained; likewise, many security
professionals are not software-conversant.

Focus tends to be on securing the app, not
securing the process that built the app.

* https://community.nxp.com/pwmxy87654/attachments/pwmxy87654/connects/183/1/AMF-AUT-T2701.pdf

Illustration: the connected car has over
300M lines of code by 2020* (and will have
more LOC than some aircraft by 2025!)

“Now Every Company Is a Software Company.” – David Kirkpatrick in FORBES 188.11

QUANTIFYING THE PROBLEM
• 76% of apps have at least one flaw; 24% of apps contain high severity flaws.*

• Although 30% of the flaws exist in the “homegrown app”, nearly 70% exist in
third-party libraries used by the app.*

• Black Hats know that there is better than a 1 in 3 chance of a data breach if they
can find and exploit a vulnerability in an app.*

• 90 percent of apps aren't tested for vulnerabilities during their development
and quality assurance stages, and even more go unprotected during
production.**

• SecurityWeek claims that software supply chain attacks tripled in 2021. ***
* Veracode – the state of software security, volume 11
** Contrast Security
*** SecurityWeek, Jan 20, 2022

FURTHER EVIDENCE
(What supply chain hacks?!)

2014: Target .. Injection of POS skimmer code into the POS codebase

2021: SolarWinds .. Malicious code inserted into Orion
2021: Codecov .. Bash uploader compromised – hacker access to the CI

processes of its customers
2021: ua-parser-js .. Modified and placed on NPM to push Crypto Mining

malware
Three common attack vectors:

• Vulnerabilities in packages used (particularly Open Source packages)

• Exploiting known vulnerabilities

• Poisoning the package

• Compromising pipeline tools

ENTER: SOFTWARE SECURITY
• Software Security, a subset of Cybersecurity, is a largely unregulated*, often

unguided frontier, but represents a huge opportunity in which to catch flaws
before they are deployed and become vulnerabilities.
• Software Security needs both destructive and constructive activities, and

occurs throughout the SDLC.
• Destructive activities: breaking software through attacks and exploits (black hat --

offense).
• Constructive activities: design, defense, and security functionality (white hat -- defense).
Both hats are necessary!

• Some elements of software security are “programming-specific”, but many
are not, and require a Program-based approach.

* The Federal government is finally interested in S/SDLC! See: Executive Order 14028 (Sec 4, May 12, 2021). The response with NIST publication 800-218
(2/3/2022) is indicative that this is going to be a “wild ride” area of infosec during the future years.

The goal of software security isn’t to write applications perfectly the first time, but to
remediate the flaws in a comprehensive and timely manner.

WHY IS SOFTWARE SECURITY DIFFERENT?

Classic security programs align work priorities with risk, building roadmaps that
answer:
• What needs to be done
• How much should be done
• In what order should we proceed

Language/Stack/discipline make for a massive variance in risk!

Software Security could benefit from a risk-based approach, yet there is no
universal control framework that addresses risk-based software security with
adequate depth to become actionable in the SDLC.

DRIVERS FOR SECURING DEVELOPMENT

There are three disciplines that can help secure our software development
practices:

Education Continuous
Improvement

Accountability

Secure
Development

Lifecycle

DOESN’T SECURITY JUST START WITH CODE?

Short answer: NO!

In most studies, bugs and flaws divide the defect space approximately 50/50.

BUGS FLAWS!

Bugs Flaws
Found in implementations Found in Design/Architecture
• Examples: • Examples

• Cross-site scripting • Weak/missing security control
• Buffer Overflow

Testing

Code Review & Scans

Penetration Testing

Architectural Analysis

*

* Jim DelGrosso and Gary McGraw:
https://searchsecurity.techtarget.com/opinion/Opinion-Software-insecurity-software-flaws-in-application-architecture

SO … WHY WAIT FOR CODE TO START SECURING?
• Security requirements
• Risk-analysis/Threat models
• Secure-by-design

• Automated/manual Code Reviews
• Risk-based testing
• Abuse case testing
• Signing & provenance

• App pen testing
• Check signing & provenance

• Monitor vulnerabilities
• Incidents / events

SHIFTING THE SECURITY FOCUS

A Security Manifesto, in the spirit of Agile

• Rely on developers and testers more than security
specialists.

• Secure while we work more than after we’re
done.

• Implement features securely more than adding
on security features.

• Mitigate risks more than fixing bugs.

Although this speaks to a culture change, we often need a program
(goals/actions/measures/rewards) to get the culture to change.

FRAMEWORK-BASED APPROACHES

Survey of tried & true frameworks

• Microsoft SDL
• OWASP OpenSAMM
• PCI Secure Software Lifecycle
• NIST 800-218 / Secure Software Development Framework
• BSIMM

MICROSOFT SECURITY DEVELOPMENT LIFECYCLE (SDL)
• One of the first! In response to Windows XP, the SDL became

mandatory for most Microsoft products in 2004.
• Heavy emphasis on Microsoft-specific technologies / culture

OWASP OPENSAMM
• Software Assessment Maturity Model
• Somewhat prescriptive

PCI SECURE SOFTWARE DEVELOPMENT LIFECYCLE
(SSDL)

• This is one half of the PCI standards for securing payment apps
• Specifies the processes by which an organization should secure its

software
• Specific to credit card security, but can provide good insights beyond

NIST SECURE SOFTWARE DEVELOPMENT FRAMEWORK
(SP 800-218, 2022)

• The NIST response to Executive Order 14028 (in response to
SolarWinds attacks on Federal agencies)
• Highly influenced by NIST CSF and BSA.org Framework for Secure

Software
• Four Processes:

• Has an extensive list of references to other frameworks and resources
Graphic credit: Chainguard, Inc

BUILDING SECURITY IN MATURITY MODEL (BSIMM)

• Measures maturity of SDLC practices
• Provides industry-specific maturity

benchmarks
• Does not attempt to prescribe your approach,

but tells what others are doing
• Framework has matured over 11 years

BSIMM IN MORE DEPTH ..
Governance. Practices that help organize, manage, and
measure a software security initiative. Staff development is
also a central governance practice.
Intelligence. Practices that result in collections of corporate
knowledge used in carrying out software security activities
throughout the organization. Collections include both
proactive security guidance and organizational threat
modeling.
SSDL Touchpoints. Practices associated with analysis and
assurance of particular software development artifacts and
processes. All software security methodologies include these
practices.
Deployment. Practices that interface with traditional network
security and software maintenance organizations. Software
configuration, maintenance, and other environment issues
have direct impact on software security.

• Each of the four domains has
three Practices

• Each Practice has a varying
number of Activities

• Activities have a maturity
scale (1 through 3)

• Activities that are no longer
observed get dropped from
the benchmark

GETTING STARTED

• Recommend: use BSIMM to educate / assess your team(s)
• If fully assessing, compare with the benchmarks of other best-in-class companies
• Create a “starting list” of activities to consider as starting points:

• Look for ways to shift left: where do you first start “securing” ?
• Begin with the 12 most common activities that other companies do: ask “why not”
• To start: eliminate or modify activities that depend on advanced

organization/concepts, such as:
• SSG
• SSG Satellite

• Perform stack-ranking to determine a prioritized order of activity adoption
• Consider Policy mechanisms to make it stick
• Continuous improvement: assess & reprioritize annually

Q&A

