
Common Developer
Crypto Mistakes

(with illustrations in Java)

Kevin W. Wall
Rochester Security Summit

Oct 5th & 6th 2016

Copyright © 2016 – Kevin W. Wall – All Rights Reserved.
Released under Creative Commons Attribution-Noncommercial-

Share Alike 3.0 United States License
as specified at

http://creativecommons.org/licenses/by-nc-sa/3.0/us/

Obligatory “It's all about me” page
 35+ years developer experience, 15+ yrs

security experience
 17 yrs at (now Nokia) Bell Labs; left as DMTS
 3.5 yrs as independent contractor (C++ & Java)
 14 years AppSec & InfoSec experience at

CenturyLink / Qwest
 Currently: Information Security Engineer at Wells

Fargo on Secure Code Review team (3 yrs)
 OWASP ESAPI for Java

 Project co-leader
 Cryptography developer (since Aug 2009)

 New OWASP Dev Guide – Crypto chapter
 Blog: http://off-the-wall-security.blogspot.com/
 G+: https://plus.google.com/+KevinWWall/
 Email: <kevin.w.wall@gmail.com>
 Twitter: @KevinWWall
 CISSP, GIAC Web Application Defender (GWEB)

What I will cover

• Dev good news / bad news
• Mistakes in using the following:

–Pseudo random number generators
–Secure hashes
–Symmetric encryption
–Asymmetric encryption

• Miscellaneous topics (time permitting)
–TLS issues
–Key management
–Transparent DB Encryption

Good News / Bad News
• Good news:

Devs no longer designing their own crypto
Devs rarely implementing standard
algorithms

• Bad news:
Dev “expertise” from copy-&-paste from
Stack Overflow, etc., so still get things wrong.

Confidentiality vs. authenticity
Confusion of cipher modes, padding schemes

Broken crypto for legacy applications
Even experts still get things wrong (e.g.,
OpenSSL, GPG, etc.).

Pseudo Random Number
Generators

(PRNG)

PRNG Weaknesses

• Having a good source of (pseudo)
randomness is essential to good
cryptography.
–Poor randomness ==> broken crypto
–Cryptographers demand a
“cryptographically secure” PRNG (CSRNG)
• java.util.Random is not a CSRNG
• java.security.SecureRandom is a CSRNG

–CSRNG must have unpredictable seed
• Seed entropy must equal (and should exceed)

the internal state of the CSRNG

PRNG Weaknesses: What to look for
• Using java.util.Random for anything related
to crypto—this would include keys, IVs,
nonces, etc.

• Seeding any CSRNG with insufficient
entropy
– If you initially require N-bits of randomness, then

the entropy pool should have at least N-bits of
randomness.

– Generally not a problem with the default
Oracle/Sun implementation of SecureRandom
and SHA1PRNG.
• Default SecureRandom CTOR uses /dev/urandom when

available BUT may a problem if lots of randomness is
required at boot time or if no /dev/urandom or
/dev/random

Example of correct use /
seeding of SecureRandom

SecureRandom csrng =
 SecureRandom.getInstance(“SHA1PRNG”,
 “BC”);
csrng.setSeed(
 csrng.generateSeed(160/8)
);

For JDK 8 and later, consider using
 SecureRandom.getInstanceStrong()
instead of SecureRandom.getInstance().

Secure Cryptographic
Hashing

Secure Hashing Weaknesses:
What to look for (1/4)

• Use of completely broken algorithms:
MD2, MD4, MD5 or algorithms that
are not true message digests such as
CRCs.

• Use of mostly broken algorithms:
SHA1 (may be okay for legacy use for
backward compatibility and some
CSRNG cases).

Secure Hashing Weaknesses:
What to look for (2/4)

• If concerned about local attacks…
 Time-dependent comparison of hashes

 E.g., Bad: String.equals() or
Arrays.equals()

 MessageDigest.isEqual() is okay after
JDK 1.6.0_17

• Calling MessageDigest.digest(byte[]) or
update(byte[]) methods on unbounded
input under adversary’s control. (DoS
attack)

Secure Hashing Weaknesses:
What to look for (3/4)

• Misusing secure hash (MessageDigest)
for message authentication codes
(MAC):
–MAC is a keyed hash, where the key is a
secret key generally shared out-of-band.

–Incorrect, naïve use:
 MAC(key, message) := H(key || message)
 Where ‘||’ is bitwise concatenation.
Problem: Susceptible to “length extension attacks”.

–Correct use: Use an HMAC (RFC 2104)...
 Mac hmac = Mac.getInstance("HmacSHA256", "SunJCE");
 hmac.init(key);

Secure Hashing Weaknesses:
What to look for (4/4)

• Misusing a secure hash to mask data
where enumeration of all or most of
the input space is feasible.
–E.g., Use SHA-256(SSN) to store as key in
database or to track in log file.

–Problem: If adversary can observe hashes,
she can enumerate SHA-256 hashes of all
possible SSNs and compare these to
stored hashes.

Is use of MD5 ever okay?
• Best collision attack against it is now about
O(224.1), which takes at most 5 or 6 seconds
on a modern desktop / laptop.

• But…okay in following cases:
–Used as a PRNG when we only need something

that is more or less unique and unpredictable;
example IV generation used with CBC for
symmetric ciphers.

–Used as an HMAC construct as defined in RFC
2104
• Bellare, Canetti & Krawczyk (1996): Proved HMAC

security doesn’t require that the underlying hash
function be collision resistant, but only that it acts
as a pseudo-random function.

Symmetric Encryption

Symmetric Encryption
Weaknesses

• Inappropriate cipher algorithms
–You aren’t still using RC4, are you?

• Insufficient key size: >= 128 bits
– Java: DESede defaults to 2-key TDES (112-

bit) unless the JCE Unlimited Strength
Jurisdiction Policy files are installed.

• “ASCII” generated keys
• Inappropriate use of cipher modes

–Related: IV abuses
• Assuming confidentiality implies data
integrity.

ASCII Keys

• Keys generated from passwords or
passphrases. E.g.,

String key = "#s0meSeCR3tK3y!!"; // Or from prop
SecretKeySpec skey =
 new SecretKeySpec(key.getBytes(), "AES");
Cipher cipher =
 Cipher.getInstance("AES/CBC/PKCS5Padding");
cipher.init(Cipher.ENCRYPT_MODE, skey);
...

Inappropriate use of cipher
modes

Question: Cipher.getInstance("AES")
… what’s the default cipher mode?
• Block modes and stream modes

–Block modes: ECB and CBC
–Stream modes: pretty much everything else

• All modes except for ECB require an IV.
• Streaming modes: Must not reuse the
same key / IV pair… EVER!

• Streaming modes do not require
padding.

Inappropriate use of cipher
modes: ECB

• ECB is the raw application of the cipher
algorithm.

• Reasons why it is the most commonly
misused:
–First (and sometimes only) example in

textbooks
–Simplest to implement (no need to bother

with IVs)
• Weaknesses:

–Same plaintext blocks always encrypt to
same ciphertext

–Block replay attacks are possible

Original
Tux image

Tux image
encrypted
with ECB

mode

Tux image
encrypted
with any

other cipher
mode

From: http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
via Wikimedia Commons; Larry Ewing, lewing@isc.tamu.edu, and The
GIMP.

What's Wrong with ECB Mode?

ECB: Block Replay Attack
(1/6)

• Adversary can modify encrypted
message without knowing the key or
even encryption algorithm.
–Can mangle message beyond
recognition.
• Remove, duplicate, and/or interchange blocks

–Can usurp meaning of message if
structure known. Consider the following
scenario...

ECB: Block Replay Attack
(2/6)

[Example from Schneier, Applied
Cryptography]*
• Assume 8-byte encryption block size.
• Money transfer system to move $ btw banks
• Assume bank’s standard message format is:

Bank 1: Sending 1.5 blocks
Bank 2: Receiving 1.5 blocks
Depositor’s Name 6 blocks
Depositor’s Acct # 2 blocks
Deposit Amount 1 block

* First discussed by C. Campell, IEEE Computer, 1978

ECB: Block Replay Attack
(3/6)

Each block is encrypted (and decrypted) independently

Image: Public domain, from Wikimedia Commons

ECB: Block Replay Attack
(4/6)

• Mallory is MITM agent, listening to comm
channel between Bank of Alice and Bank of
Bob.

• Mallory sets up accounts in both banks and
deposits seed money in Bank of Alice.

• Mallory transfers some fixed amount of the
seed money to Bank of Bob and records
transaction.

• Repeats later, and looks for identical
blocks; eventually isolates acct transfer
authorization.

ECB: Block Replay Attack
(5/6)

• Mallory can now insert those message
blocks into communication channel at
will. Each time, that fixed amount will
be deposited in Mallory’s account at
the Bank of Bob.

• Two banks will notice by close of
business when accts are reconciled.
By that time, Mallory has already
skipped town.

ECB: Block Replay Attack
(6/6)

• Can not be defeated by simply
prepending date/time stamp to
bank transfer authorization
message. Mallory can replay
individual blocks that lie on whole
block boundaries (e.g., in this case
the Depositor’s Name and account
#).

• Can be defeated by adding secure
keyed hash to entire message (or
using another cipher mode).

ECB: What to look for

• No cipher mode specified at all. E.g.,
Cipher cipher = Cipher.getInstance(“AES”);
In Java, this is the same as:
Cipher cipher =
 Cipher.getInstance(“AES/ECB/PKCS5Padding”);

• No evidence that an IV is used
–In Java, look for absence of both
IVParameterSpec and Cipher.getIV()

–Check lengths of resulting encryption
• Generally IV is prepended to the raw ciphertext.

(Exception might be where IV is fixed (bad) or
determined algorithmically; discussed later.)

ECB: Is it ever okay?
• Yes, when:

–Encrypting plaintext with a less than 1 cipher
block and ciphertext attacks not feasible:
• Blowfish and DES (and hence DESede) block size: 64

bits
• AES block size (and most other AES candidates): 128

bits
–OR when encrypting random data

• E.g., nonces, session IDs, random secret keys; maybe
passwords if strong passwords enforced (LOL!).

• AND padding is used when appropriate (random
data)

• AND block replay attacks are not an issue
• OR, using it for asymmetric encryption (only

applicable mode!)

If use of ECB seems okay…
• Make sure it is not used in a scenario where
a block replay attack is possible.

• Ask yourself:
–Are multiple blocks of ciphertext encrypted

with ECB used?
–Are these multiple ciphertext blocks exposed

to an “adversary”?
–Will block re-ordering ever fail to be detected

in any cases? (I.e., are there cases where
data integrity not always ensured?)

• If answer to these is “yes” for all questions,
block replay is probably possible.

Key / IV reuse in streaming
mode (1/9)

• Stream ciphers and block ciphers operating
in streaming modes create a cipher bit
stream that is XOR’d with the plaintext
stream.

• For a given key / IV pair, the same cipher
bit stream is generated each time. Let’s
call this cipher bit stream, C(K, IV).

• Let the encryption function for such a
streaming mode be designated as E(K, IV,
msg).
–Then E(K, IV, msg) = msg XOR C(K, IV)

Key / IV reuse in streaming
mode (2/9)

• Let’s see what happens if we encrypt 2
different plaintext messages, A and B, this
way

 E(K, IV, A) = A XOR C(K, IV)
 E(K, IV, B) = B XOR C(K, IV)

• If an adversary intercepted both of these
ciphertext results, they can compute the XOR
of them, which is

 E(K, IV, A) XOR E(K, IV, B) =
 A XOR C(K, IV) XOR B XOR C(K, IV)
which, since XOR is commutative, is:
 A XOR B XOR C(K, IV) XOR C(K, IV) = A XOR B
That is, the XOR of the 2 plaintext messages, A and B.

Key / IV reuse in streaming
mode (3/9)

• So what do we do with the XOR of 2 plaintext
messages, A and B?

• If messages A and B are both written in some
normal language (or character set, like ASCII),
we can make that as a guess and use
frequency distribution of some anticipated
language (or format, such as CC#s, etc.) and
guess likely plaintext bits (characters). If the
result resembles something intelligible (e.g.,
ASCII letter), guess was probably right.

• Modest computers can crack this in matter of
few minutes for modest length messages.

Key / IV reuse in streaming
mode (4/9)

• The more ciphertexts created using
the same key / IV pair and observed
by an adversary, the better.

• Fixed message formats / structures
(e.g., knowing you have all numeric
fields such as SSN or credit card #)
make it even more trivial.

• Eventually, both plaintexts (or
shortest part if different lengths) get
revealed.

http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

Key / IV reuse in streaming
mode (5/9)

Next 4 slides from Dr. Rick Smith, Univ of St. Thomas, MN
(License: Creative Commons Attribution ShareAlike 3.0 USA)

Key / IV reuse in streaming
mode (6/9)

• To recover the original message
(image), we XOR the encrypted “Send
Cash” image with the encryption key
again:

“Send Cash”
encrypted

Encryption
key

“Send Cash”
Plaintext
image

Key / IV reuse in streaming
mode (7/9)

Note that we have the same encryption key XOR’ing both images.

Key / IV reuse in streaming
mode (8/9)

Here’s what happens when we XOR the 2
images that both used the same encryption
key together:

Key / IV reuse in streaming
mode (9/9)

• But wait! It gets worse. It an application is
doing this and an adversary can decrypt a
message, they may be able to use a MITM
attack to actually alter the ciphertext.

• Wikipedia example (Stream_cipher_attack):

(C(K) xor "$1000.00") xor ("$1000.00" xor
"$9500.00") = C(K) xor "$1000.00" xor
"$1000.00" xor "$9500.00" = C(K) xor
"$9500.00"

Detour: Authenticated Encryption

• Encryption provides confidentiality, not
integrity. (Integrity, aka authenticity)

• Approaches to authenticated encryption
–Encrypt-then-MAC (EtM): Encrypt, then apply

MAC over IV+ciphertext and append the MAC.
–Encrypt-and-MAC (E&M): Encrypt the plaintext

and append a MAC of the plaintext.
–MAC-then-Encrypt (MtE): Append a MAC of the

plaintext and encrypt them both together.
• Decryption operation applied in reverse
order.

• EtM built into some cipher modes such as
CCM, GCM, EAX, etc.

Horton Principle

• David Wagner and Bruce Schneier
• Relevant when considering what to data to
include in a MAC

• Semantic authentication: “Authenticate
what is meant, not what is said”
–Avoid unauthenticated data: either don’t

send / rely on it, or include it in the MAC
–Relevant in message formats and protocols

 E.g., Alice sends: “metadata||IV||
ciphertext||MAC”

Symmetric Encryption
Weaknesses: CBC

• Overall, CBC probably most robust
mode when used correctly.

• Use correctly means:
–Random key and random IV with padding
–HMAC over the IV+ciphertext applied as
“encrypt-then-MAC” approach.

• Common mistakes:
–Fixed IV or predictable IV (e.g., counter,
time, etc.)

–Failure to MAC correctly (e.g., no MAC at
all, encrypt-and-MAC, or MAC-then-encrypt)

Why is AE needed?
• When ciphertext’s authenticity is in
doubt, certain cryptographic attacks
are possible that will either divulge
the plaintext (or portions thereof) or
possibly even real the secret key.

• Padding oracle attack, Serge
Vaudenay, 2002
–Originally discussed as deficiency in IPSec
and SSL

–Dismissed as being impractical until Rizzo
and Duong research and POET software in
2010

Symmetric Encryption Weaknesses:
Assuming confidentiality implies data

integrity

• Only true if one is using an AE cipher mode
such as CCM or GCM (the only 2 AE modes
that are NIST approved) or using a correctly
implemented EtM approach.

• If confidentiality is not required, better (and
faster) to just use an HMAC.

• Look for cases where plaintext is already
known to attacker and encryption is used
to prevent tampering.

Asymmetric Cryptography:
Encryption

Common Asymmetric
Padding Schemes

• No padding
• PKCS#1 v1.5 (simply called
“PKCS1Padding” in Java)

• Optimal Asymmetric Encryption
Padding (OAEP)

Asymmetric Ciphers and
Chosen Plaintext Attacks (1/3)

• All asymmetric ciphers are prone to
chosen plaintext attacks (CPA).
–CPA is a cryptanalytic attack where an
attacker can chose which plaintext to
encrypt and then observe the resulting
ciphertext.

–CPA is always possible with asymmetric
ciphers because we assume the algorithm
details is known as well as the public key.

Asymmetric Ciphers and
Chosen Plaintext Attacks (2/3)

• Why might this be a problem?
–Normally it’s not because:

• We usually are encrypting highly unpredictable
plaintext that is too large to be enumerated.
E.g., symmetric session keys, cryptographic
hash values

• Or using OAEP padding.
–It becomes a problem when the is highly
regular or short enough to enumerate all
possible values and/or PKCS1 (or 1.5)
padding (or no padding) is used.

Asymmetric Ciphers and
Chosen Plaintext Attacks (3/3)

• Real-life (bad) example
–Application uses RSA algorithm to encrypt

credit-card #s and store the resulting
ciphertexts in application DB.

–Consider inside attacker with access to DB
records (e.g., DBA, developer, tester) as well
as the public key.

–Attacker encrypts all possible credit card #s
with public key and saves mapping of
plaintext / ciphertext pairs.

–Lookup into application DB records via CC#
ciphertext allows discovery of credit card
holder as well as revealing plaintext CC#.

Miscellaneous Topics

 Key Management
 Database Encryption
 TLS/SSL issues

Key Management:
Re-keying Frequency(1/2)

• PCI DSS 2.0 and later says that you
must change symmetric crypto keys
at least yearly? Is that enough?

• Steve Bellovin says in
http://osdir.com/ml/encryption.genera
l/2005-02/msg00005.html:
–For 3DES in CBC mode, re-key at least
every 232 * 64-bits of plaintext

–For AES in CBC mode, every 264 * 128-bits
–General: every 2N/2 * cipher_block_size
bits, where N is key size in bits.

Key Management:
Re-keying Frequency (2/2)

• “Sweet32”, a TLS attack on legacy
32-bit cipher suites is example:

• https://sweet32.info/
• https://sweet32.info/SWEET32_CCS16.
pdf

• Matthew Green blog post provides
more explanation:
● http://blog.cryptographyengineering.com/

2016/08/attack-of-week-64-bit-ciphers-in-tls.html

Key Management:
Secure Key Storage

So where do you store your keys?
• Ideally: an HSM or a TPM
• FAIL: If hard-coded in source code or put
into properties file.
● Both situations usually under version control!

• Ok: Config file, locked down & controlled by
ops staff and unavailable to all others.

• Better: For .NET, DPAPI, WebLogic
Encryption Services, Java Key Store

• NEVER put encryption key in same file with
data that's being encrypted.

Encrypting Data in a DB

Three ways to encrypt data for a database:
1. DB Engine itself does it via (mostly)
Transparent Data Encryption (TDE)

2. Done via a proxy; e.g., MIT's CryptDB
3. Done via application code

From application perspective, TDE approach
is simplest.
● Transparent to the application.
● Available for Oracle and Microsoft SQL Server
● Probably satisfies “letter of the law” for PCI

DSS compliance (not verified).

30k' view of TDE
● Offers encryption at the column, table, and

tablespace levels.
● Limited ciphersuite available; e.g., AES & 3DES
● Key management: usually 2 keys involved:

● DB “master” key – a key encryption key,
secured w/ password

● Table / column / tablespace keys, encrypted
by DB master key

● Usually CBC mode used, with usually with
same IV for all encryptions
● Same IV required for deterministic encryption

so indexing works as expected
● “Salt” allows non-deterministic encryption

WIYTM? Why TDE fails
● If any application has that DB table / column

open, then any other application with access
to that table / column has access to encrypted
data!
● Not problem if data properly partitioned via

“views”.
● Backups, depending on how done, can be in

plaintext!
● Usually the data we are encrypting in DB is:

● Less than 20 bytes
● Has particular format
● Limited possible values

Result: Patterns may allow enumeration of
values.

SSLSocket & Server AuthN
• SSLSocket (or subclass) created by
SSLSocketFactory does not do host name
verification or cert pinning by default.
Hence, MITM attacks are possible.
–Must implement your own. 2 approaches:

• Subclass SSLSocket; see
http://www.velocityreviews.com/forums/t95828
7-adding-hostname-verification-to-
sslsocket.html

• Create an SSLContext that does host name
verification; see
http://stackoverflow.com/questions/8545685/wri
ting-a-ssl-checker-using-java

Specifying JCE Providers

• Java has a concept of security providers.
–Statically added via:

• JRE: $JAVA_HOME/lib/security/java.security
• JDK: $JAVA_HOME/jre/lib/security/java.security

–Dynamically added via:
• Security.addProvider(Provider provider)
• Security.insertProviderAt(Provider provider, int pos)
• Various getInstance() methods take Provider as 2nd

arg
• Determined by position; defaults to what is
in java.security.

• This concept extends to crypto providers

What could possibly go
wrong?

import org.bouncycastle.jce.provider.*;
…
int pos = Security.addProvider(

new BouncyCastleProvider());

Static setting in
java.security

• Default list of providers ordered by
preference:

security.provider.1=sun.security.provider.Sun
security.provider.2=sun.security.rsa.SunRsaSign
security.provider.3=sun.security.ec.SunEC
…
security.provider.9=sun.security.smartcardio.SunPCSC
security.provider.10=sun.security.mscapi.SunMSCAPI
security.provider.11=org.bouncycastle.jce.provider.Bo
uncyCastleProvider

How about this?

import org.bouncycastle.jce.provider.*;
…
Security.insertProviderAt(

new BouncyCastleProvider(), 1);

Equivalent static setting in
java.security

• Equivalent as if we did this:
security.provider.1=org.bouncycastle.jce.provi
der.BouncyCastleProvider
security.provider.2=sun.security.provider.Sun
security.provider.3=sun.security.rsa.SunRsaSi
gn
security.provider.4=sun.security.ec.SunEC
…
security.provider.10=sun.security.smartcardio.Su
nPCSC
security.provider.11=sun.security.mscapi.SunMSC
API

What could possibly go
wrong?

• Consider this in Logger.getLogger()
method in rogue copy of log4j.jar
someone downloaded:

 …
 Security.insertProviderAt(

new MyEvilProvider(), 1);
 …

How do we address this?

• Specify the Provider instance as part
of the getInstance() methods; e.g.,

Cipher.getInstance(“AES/CBC/PKCS5Padding”,
 new BouncyCastleProvider());

OR
• Use a Java Security Manager and
restrict what classes may call
Security.addProvider() and
Security.insertProviderAt()

What to look for

• Calls to either
 Security.addProvider()
OR
 Security.insertProviderAt()
without the use of a Java Security
Manager (JSM)
Caveat: Java Security Manager is rarely used
and if it is used, usage of a properly restrictive
security policy is hardly ever set. Also, if the jars
are not signed and validated before use, using
the JSM matters little.

Additional References

• New OWASP Dev Guide, chapter 11
(Cryptography) [still a work in
progress]
–https://github.com/OWASP/DevGuide/blob/
master/03-Build/0x11-Cryptography.md

–And those references therein

Questions?
(Now, or email me at

kevin.w.wall@gmail.com,
or DM me on Twitter @KevinWWall)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 56
	Slide 58
	Slide 67
	Slide 68
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99

